京公网安备 11010802034615号
经营许可证编号:京B2-20210330
朝阳大悦城利用数据分析成功转型
联商网特约专栏:有效的商户评价是商户管理的基础,信息部在租金销售矩阵的基础上加入了抽成、租售比与增长情况建立了一组分析模型,能够全面评价商户的租金贡献性,销售成长性,单店盈亏收益性,诚信合规性。
朝阳大悦城自2010年5月开业以来,积极探索,自主创新,利用数据分析成功地实现了转型。大悦城的成功理念是:传统经验+互联网思维=创新基因。
逆水行舟-朝阳大悦城生命力旺盛
在零售环境大改变的今天,当许多购物中心面临更多压力时,朝阳大悦城却表现出极其旺盛的生命力。2010年5月开业,2011年销售额突破10亿元,2012年销售额近14亿元,开业不足3年,便实现了盈利。2013年销售额突破21亿元,同比增长50%,客流超2100万,同比增长45%。其中,去年平均每家商户的年销售约为486万元,平均每平方米租赁面积的年销售贡献超过1.8万元。
慧眼识针-大数据成为主要推动力
朝阳大悦城的生命力何在?除了及时的业态调整和不断创新的营销活动等之外,其真正的内在的核心竞争力是高效的运营管理。在业态调整和招商规划过程中,大悦城一直重视的数据团队派上了用场。
作为2010年开业的购物中心,朝阳大悦城对大数据重视程度远超其他同类商场,其运营管理以大数据为基础来部署,所有的营销、招商、运营和活动推广,都围绕着大数据的分析报告来进行。
数据营销
朝阳大悦城开业时,正处于零售环境大改变的时期。电商的冲击下,传统的做法已经无法再满足需求,加上所处的地区商业氛围明显不足,开业初期面临很大压力。有压力就有动力;要生存,就要不断创新。
朝阳大悦城成立之初,就组建了一个数据团队。对传统零售行业而言,由于消费者进入商场的消费目的并不明确,加之所有购买行为在互联网不留下浏览痕迹,这就增加数据来源也成为数据分析团队关注的主要方面。2012年一年中,朝阳大悦城在商场的不同位置安装了将近200个客流监控设备,并通过Wi-Fi站点的登录情况获知客户的到店频率,通过与会员卡关联的优惠券得知哪些是受消费者欢迎的优惠产品。
朝阳大悦城的数据来源主要有三个,POS机系统、CRM系统及消费者调研。任何一笔收入都进入POS机系统,而CRM系统主要是与人关联,便于对客户进行研究。至于消费者调研,主要是海量的调研问卷及定期的小组座谈,深度访谈。
精准定位
通过对车流数据的采集分析,信息部发现,具备较高消费能力的驾车客户是朝阳大悦城的主要销售贡献者,而通过数据测算每部车带来的消费,客单超过700元。
在对大量数据研究的基础上,信息部分析出两个难题:一是在商户大力促销及活动充分宣传的基础上,预期客流与提袋率增长相对容易实现,但客单价的大幅增长较为困难;二是根据历史经验,单日销售冲高最大的动力来自于零售业态,而零售的集中释放于下午和晚上,上午时段的增长成为增量的关键时段。解决这两大难题必须从会员入手,想办法将在上午把最优质的会员吸引到店、刺激他们充分购物。
通过以上措施,在2013年店庆促销活动当天,会员销售出现峰值,比历史前高增长142%,据朝阳大悦城统计,当日销售总额、会员销售及坪效纷纷刷新历史新高,同比之前最高纪录增幅达46.9%、142.2%和45.3%。
高效管理
一个购物中心能否发展下去,一方面是看有无客源,一方面则在于有无足够的商户。毕竟,400多商户是朝阳大悦城的衣食父母。
有效的商户评价是商户管理的基础,信息部在租金销售矩阵的基础上加入了抽成、租售比与增长情况建立了一组分析模型,能够全面评价商户的租金贡献性,销售成长性,单店盈亏收益性,诚信合规性。
通过对品牌商户日常经营状况的监测结果,总结分析商户的顾客消费粘性与弹性、销售业绩增长与下滑的原因是数据团队的常规工作。
通过“多维度的大数据分析方法”,信息部对每一个商户在各个维度中的表现都进行了精准赋值。
协调运作
在对朝阳大悦城内部入驻商户通过数据分析而服务到位的同时,朝阳大悦城也在这一过程中打造着自身品牌价值。除此之外,还有大量非结构性辅助数据,与销售变化进行结构化分析,提前预测区域内客群结构的变化,分析客群的潜在需求,有针对性的进行自我营销,在消费客群心目中树立品牌,赢得口碑。
扬帆远航-创造未来新奇迹
在大数据已成为主流的大环境下,朝阳大悦城准确的把握了这一趋势,将传统经验与互联网思维相结合,走出了一条适合自己的阳光大道。沿着这一方向走下去,同时根据市场的变化进行适时的微调,综合管理,协调动作,相信朝阳大悦城必将创造出新的奇迹,让我们静观其变。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09