京公网安备 11010802034615号
经营许可证编号:京B2-20210330
超市数据分析的13条军规_数据分析师考试
零售的复杂性,远远超过很多人的想象——大到门店选址,小到货品码放位置,都要牵扯众多的数据和分析。
需要做的就是坚持每天看数据、记数据,这是培养数字敏感性,这个做好了,接下来,就要问为什么数据会变动,分析原因(促销、节日、天气、卖场宣传、卖场环境、消费心理、消费人群、价格、竞争对手等等),继续总结。总结的结论需要你进行实际运用及跟踪结果,之后再分析,再得出结论。下面一起来看看一会这个行业资深人员的总结。
艾米特·考克斯为凯马特工作了27年,从推车、上货开始干,直到最后成为数据库市场营销和信息系统主管。他在数据分析方面颇有建树,先后在GE、沃尔玛等公司负责消费者分析的工作。对零售行业的不同侧重点——分析市场购物篮数据、吸引顾客冲动购买、运用数据分析直到决策、利用地理数据为门店选址、进行劳动力预测以及积分卡战略分析等等方面,提供了很多实用的分析工具和思路。
1.不少时候,当消费者进入商店时,他们会被问及一些关于此次购物的问题。当他们结束购物走出商店时,他们会再次被拦下参加调查。查看他们的购物小票就会发现,他们实际购买的商品和之前调查时说打算购买的商品往往不符。此类调查实行起来非常不容易,但得到的信息非常有效——消费者嘴里说的和真正打算做的未必一致。
2.数据的获取、存储和分析都要耗费不少资金,要先弄清楚自己想要从数据中得到什么,否则会陷入到无止境的数据追寻中。
3.跨渠道分析正在经历着大规模的扩张,其中包括将所有在线交易数据、线上消费者数据与店内交易、门店消费者数据相整合。这听起来简单,但做起来非常困难:你需要建立起客户关系管理机制,借此区别出每一位顾客身份。
4.在美国,我的团队成功构建了跨渠道、跨商品的市场营销结构,并在此基础上更进了一步,向原本几乎只在网上购物的顾客提供门店独有的促销优惠。这么做的意义在于,一旦顾客踏进商店大门,向他出手冲动型商品的概率就大了很多。在网上就很难激发顾客的冲动购买,哪怕线上顾客的确进行了冲动购买,我们也很难判断。
5.传统网站分析只关注点击流量,但现在许多公司已经开始把目光投向互联网客户管理。
6.利用市场购物篮数据分析商品的亲缘关系,能极大指导空间、货架的布局规划。我们可以找到一些合适的商品,以优惠价进行捆绑销售。虽然略微调低了商品的总价,但卖出的商品数量增加了,这能帮我们赚回可观的利润。
7.一些商品和购物篮中其他商品毫无关联(是冲动购买的),如果能让顾客更容易发现此类冲动型商品,销售量可以显著增长。最后我选定了3样商品放在收音机柜台上——一次性相机、4卷一组的透明胶带和12只装的AA电池。最终的统计显示,销售收益增加了数百万美元。
8.最佳商圈划分需要考虑人口密度、竞争对手店址、人口统计、住房、生活方式这些因素,还需要考虑自然屏障和交通模式(如道路网)。
9.英国乐购已经开始逐步停用天天平价的策略,表示这么做的最主要原因是顾客对天天平价不感冒。乐购已经积累下了大量消费者的数据,可以分析出他们最重要的客户群常购买哪些具有价格弹性的商品。这一分析结果是无价之宝。乐购可以据此来搭建定价体系,让顾客每天都能以低价购买他们最需要的商品,而无需降低商店里所有商品的价格。
10.我们淘汰了20%的商品,留出空间来排放销量最高的商品,并把亲缘关系密切的商品布局在一起,这一季度的销量有25%~30%的提升。
11.在美国,典型的百货商店占地5万~7万平方英尺,年销售额若要维持在2000万美元到4500万美元,就需要10万户家庭的人口基础。
12.我们帮助消费者估算如果他们继续在本店购物,未来每周、每月能省多少钱。这种做法的确改变了30%的顾客群的购物频率。
13.70%的利润是由30%的顾客带来的,你需要通过仔细的分析判断出这30%的顾客是谁,与此同等重要的是,找出那些只购买打折商品的顾客。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09