京公网安备 11010802034615号
经营许可证编号:京B2-20210330
企业迅速扩张中需要大数据分析方案_数据分析师
企业都在努力获取和解读不同分析系统的数据,而每个系统又负责不同的数据和处理类型。企业都在试图提升数据分析的广度和深度,以便满足业务运营的需求。但是,他们的挑战在于,如何将各种全新的分析引擎、文件系统、存储技术、程序设计语言和数据类型完美地整合到统一、互联、互补的分析架构中。而由于各种不同的原因,过去企业在这方面的尝试都不成功。从大数据获取价值,企业必须创建一个架构来协调并行数据库的分析处理,而不是联合所有的服务器。 “Teradata QueryGrid是最灵活的解决方案,配备实现所有功能的创新型软件。
得以轻松完成跨数据库分析处理”,Teradata天睿公司实验室(Teradata Labs)总裁 Scott Gnau 表示。“用户选择相应分析引擎和文件系统后,Teradata软件只要执行一条SQL查询,就能无缝整合不同系统的分析处理能力,无需移动数据。此外,Teradata还支持在单一负载中使用多个文件系统和分析引擎。” Hortonworks公司首席技术官Ari Zilka表示:“Teradata天睿公司开创性地将Hadoop以及Hcatalog与Aster SQL-H相结合,让客户能够访问Hadoop中储存的大量数据,直接运行高级分析功能。如今,他们正进行更深层次的研发,将数据处理能力部署在Hadoop之中,运用Hortonwork公司Singer Intiative带来的Hive性能提升优势,以前所未有的规模和速度提供分析结果。”
Teradata QueryGrid打破了业界传统,提供了无缝的自助式服务,用户只需在单一Teradata 数据库(Teradata Database)或者Teradata Aster 数据库查询,就能访问和分析各个系统的数据。Teradata QueryGrid采用分析引擎和文件系统,使用户专注于数据访问和分析,无需专用工具或IT人员介入。通过在数据的原有存储位置进行处理,最大限度避免了数据移动和复制。 Teradata Database 15数据库配以QueryGrid的性能,能够在开源Hadoop平台、Aster数据库及其他数据库中,为用户提供双向数据迁移及下推(pushdown)处理。
查询可以从Teradata 数据库发起,在Hadoop、Aster数据库及其他数据库环境中获取、筛选和返还数据子集,并在Teradata数据库中进行再加工,通过这种分析能力整合Teradata 数据库与Hadoop数据库中的数据。 Teradata统一数据构架(Teradata Unified Data Architecture)整合Teradata 数据库、Teradata Aster大数据探索平台和Hadoop技术,让Teradata QueryGrid能够拓展和丰富Teradata及Aster的查询,从而为用户提供可靠的洞察力。
使用Teradata数据库及Teradata Aster大数据探索平台的优势,用户便可从Teradata QueryGrid双向数据迁移和下推分析处理中获益良多。Teradata天睿公司的愿景是创造出更成熟的大数据分析方案,连接分析引擎与文件系统,将用户的数据处理能力扩展至整个公司。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20