
企业迅速扩张中需要大数据分析方案_数据分析师
企业都在努力获取和解读不同分析系统的数据,而每个系统又负责不同的数据和处理类型。企业都在试图提升数据分析的广度和深度,以便满足业务运营的需求。但是,他们的挑战在于,如何将各种全新的分析引擎、文件系统、存储技术、程序设计语言和数据类型完美地整合到统一、互联、互补的分析架构中。而由于各种不同的原因,过去企业在这方面的尝试都不成功。从大数据获取价值,企业必须创建一个架构来协调并行数据库的分析处理,而不是联合所有的服务器。 “Teradata QueryGrid是最灵活的解决方案,配备实现所有功能的创新型软件。
得以轻松完成跨数据库分析处理”,Teradata天睿公司实验室(Teradata Labs)总裁 Scott Gnau 表示。“用户选择相应分析引擎和文件系统后,Teradata软件只要执行一条SQL查询,就能无缝整合不同系统的分析处理能力,无需移动数据。此外,Teradata还支持在单一负载中使用多个文件系统和分析引擎。” Hortonworks公司首席技术官Ari Zilka表示:“Teradata天睿公司开创性地将Hadoop以及Hcatalog与Aster SQL-H相结合,让客户能够访问Hadoop中储存的大量数据,直接运行高级分析功能。如今,他们正进行更深层次的研发,将数据处理能力部署在Hadoop之中,运用Hortonwork公司Singer Intiative带来的Hive性能提升优势,以前所未有的规模和速度提供分析结果。”
Teradata QueryGrid打破了业界传统,提供了无缝的自助式服务,用户只需在单一Teradata 数据库(Teradata Database)或者Teradata Aster 数据库查询,就能访问和分析各个系统的数据。Teradata QueryGrid采用分析引擎和文件系统,使用户专注于数据访问和分析,无需专用工具或IT人员介入。通过在数据的原有存储位置进行处理,最大限度避免了数据移动和复制。 Teradata Database 15数据库配以QueryGrid的性能,能够在开源Hadoop平台、Aster数据库及其他数据库中,为用户提供双向数据迁移及下推(pushdown)处理。
查询可以从Teradata 数据库发起,在Hadoop、Aster数据库及其他数据库环境中获取、筛选和返还数据子集,并在Teradata数据库中进行再加工,通过这种分析能力整合Teradata 数据库与Hadoop数据库中的数据。 Teradata统一数据构架(Teradata Unified Data Architecture)整合Teradata 数据库、Teradata Aster大数据探索平台和Hadoop技术,让Teradata QueryGrid能够拓展和丰富Teradata及Aster的查询,从而为用户提供可靠的洞察力。
使用Teradata数据库及Teradata Aster大数据探索平台的优势,用户便可从Teradata QueryGrid双向数据迁移和下推分析处理中获益良多。Teradata天睿公司的愿景是创造出更成熟的大数据分析方案,连接分析引擎与文件系统,将用户的数据处理能力扩展至整个公司。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30