京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SAP:大数据必须和行业应用相结合_数据分析师考试场
在大数据这个词出现之前,关于数据价值的问题就一直存在。 至于为什么近期大数据如此火热,我认为,真正驱动大数据热的原因来自于用户所面临的商业挑战。
事实上,我们在和客户谈论关于大数据的问题时,经常会从大数据谈到大、而有用的数据,或者是大却不好的数据,抑或是如何获取实时的数据分析等。由此可见,什么样的名词其实并不重要,关键在于能够帮助用户解决怎样的业务问题,怎样让用户的数据能够发挥作用,变为真正的业务价值和“真 金白银”的收入。 Q:中国的大数据市场潜力如何? 麦马翰:中国的大数据市场有着巨大的潜在商机。首先,中国有很多大型的客户,例如银行、电信运营商等,他们对于大数据分析都有着很迫切的需求。以银行为例,他们有着非常大的数据量,但如何才能够从这些大数据中提取价值,来改善用户体验,提升利润率呢? 以往在市场竞争不是十分激烈时,这一需求并不是十分迫切。
但随着市场竞争的加剧,以及中国居民收入的迅速增长,银行的客户服务方式也在发生变化,需要针对客户的个性化需求提供及时的、有针对性的服务,否则很有可能会因为服务方面的问题而造成客户的大量流失。 但银行如何才能知道哪些用户在消费行为、收入等方面发生了变化呢?采用传统的数据分析方式,银行也许可以在一个月后知道这些信息,但那为时已晚。而通过大数据的应用,银行可以实时的了解哪些客户的消费行为发生改变,收入发生了怎样的变化,这样就可以告诉银行的客户经理,采取有针对性的服务去留住那些客户。 Q:与竞争对手相比,SAP的大数据策略有什么不同? 麦马翰:市场上有很多大数据厂商,但其实S A P并不是经常谈论大数据。因为,我们认为,大数据必须和特定行业用户的特定应用相结合,从业务需求的角度来进行讨论,才更有价值。
所以,我们在和用户沟通时,更多是在分析用户的业务发展方向,以及用户所面临的业务难题等。而不是简单的说大数据应该存在哪里,或者大数据应用如何使用等。 举个例子,一家美国的大型农机产品生产企业,面临着来自中国和东南亚一起企业的市场竞争压力,因此他们想通过I T应用的实施来帮助他们增强市场竞争力。我们在和这家企业进行沟通时,并没有谈什么大数据,而是从业务角度入手,看如何能够使其公司所生产的农机产品具有更大的价值:因为,竞争对手产品的价格可能只是他的1/2。
通过对用户的业务进行分析,我们发现他们可以为用户提供一些增值的服务来提升自己对客户的价值,从而避免陷入到单纯的价格竞争中,例如通过地理情况的分析、天气情况的分析,来看看不同的农作物,在不同的地理位置、不同的土壤条件、不同的天气情况下,它的产量如何。
这样他们就能够为用户提供相应的种植方面的建议和服务。针对这些业务需求,我们给他们提供了数据实时分析的解决方案,通过对数据进行实时分析,他们可以为用户提供更多的、更有价值的建议和服务,也使自己的市场竞争力得到了大幅的提升。
我们认为,从业务的角度出发来探讨大数据,远比单纯的卖设备或软件等对于用户更有价值,这也是S A P与竞争对手的很大区别,因为我们对于用户的业务更加了解,也更有经验。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06