京公网安备 11010802034615号
经营许可证编号:京B2-20210330
(四)大数据分析优势显著
第一,大数据能够实现分析的高度智能化。当前,我们已经进入智能经济时代,而大数据能够帮助我们实现信息智能化,即能利用有效的工具对数据进行有效的挖掘和专业化处理,进而通过加工实现数据的增值,并实现盈利。大数据的优势在于:一方面实现信息收集和分析的智能化,另一方面实现数据与用户需求的有效匹配。大数据分析的4个关键能力分别为智能预测、高并发处理、统计分析和智能推荐。此外,大数据分析系统一般可以分为建模层、集成层、存储层、处理层、可视化层和数据发布层等6个层次。
第二,及时、迅速。大数据分析改变之前的市场调研和数据分析相对滞后的模式和方式,能够及时、迅速地进行分析。传统的市场调研和数据分析一般都需要半年甚至更长的时间,例如国家人口普查甚至需要一年以上的时间,而基于互联网的大数据分析则能够快速呈现结果。
第三,成本相对较低。传统的市场调研方法,由于需要使用大量的人力和物力,耗资巨大,而大数据由于可以大量使用技术手段,其成本相对较低。
第四,更为准确。传统的数据分析由于很难准确调研用户的行为习惯,一般来说,难以有效精准,而大数据分析则能够有效挖掘用户的真实想法和习惯,其结果也更为准确。
(五)大数据实施的关键
第一,数据的可获得度。目前在国内,大数据的发展严重受制于政府信息的公开性不够,很多数据难以获得,导致难以实现真正的大数据挖掘和分析。
第二,模型建构。模型的科学性直接决定着数据分析的质量,这就要求有高超的建模水平。
第三,观点提炼。为决策提供依据的基于数据挖掘的独到、高质量的观点,高度依赖于高质量的数据解释,这就体现了行业专家的价值。不同的专家对于同一个数据往往会给出截然不同的结论,在房地产市场,任志强、谢国忠都能拿到同样质量的数据,但是其分析结果却有天壤之别。
(六)从数据运营到运营数据
首先,要清楚用大数据做什么。大数据主要解决如下问题:要解决何问题?谁的问题?你能解决这个问题吗?在当下能解决吗?可以用数据解决吗?
其次,用框架做决策。一是确定问题,从解决问题的角度收集数据;二是整理数据,放入数据框架内;三是看框架与决策的关系;四是根据决策行动;五是检查行动是否达到目的。
再次,大数据如何做:混、通、晒、存、管、用。一是“混”,即数据部要和业务部混在一起,混在一起是开展大数据的前提。二是“通”,即带着业务问题看数据或者带着数据来看业务问题。业务问题和数据问题之间的“通”,部门数据和部门数据之间的交叉。通的关键是从事业务问题的和从事数据问题的能够具有相同的话语体系,但是现在无论在传媒业还是在其他行业,多采取的不是同一套话语体系,这就必然导致难以实现大数据与产业的有机融合。三是“晒”,即在获取、使用、分享、协同、连接、组合之上让自己变得超级简单和便捷。为了更好地“晒”数据,一方面需要建立起科学合理的分析框架,另一方面需要善于运用可视化工具,实现分析结果的可视化。四是“存”。必须清楚的是,收集数据不是目的,让收集到的数据产生价值才是目的。任何公司都没有财力和能力收集全部的数据,这就要求公司首先清楚要解决的问题是什么,唯有如此,才能够实现更高的投入产出比。五是“管”,即学会用数据产品来解决获取及使用数据的问题。六是“用”,即对数据的分裂和重组,都能做到颠覆性创新。例如,我们一般把性别分为男和女,而阿里巴巴为了更好地描述用户,则把用户的性别分为十几类。
三、大数据时代下的智能传播
在移动互联和大数据时代下,用户的需求更为个性化和定制化,这就要求我们充分利用大数据技术来实现智能传播。
(一)用户与用户需求巨变
首先,互联网尤其是移动互联用户成为主流。根据中国互联网络信息中心发布的《第34次中国互联网络发展状况统计报告》显示,截至2014年6月30日,中国网民规模达到6.32亿,互联网普及率为46.9%;2014年上半年,网民人均周上网时长达25.9小时;手机网民规模达5.27亿,随着4G的大规模推广和应用,未来的手机网民规模必将迅猛增加。得益于动辄几亿的庞大用户规模,互联网媒体高速增长。2013年,互联网广告收入高达1100亿元,仅比居于首位的电视广告收入少1.1亿元;仅腾讯公司一家,其2013年的销售收入就高达604.37亿元,净利润170.63亿元,是2013年我国整体报业净利润的近2倍。
其次,用户的需求越来越个性化、定制化、精准化。在传统媒体时代,信息相对稀缺,并且由于技术的限制,用户只能接受统一的、标准化的信息,但是这种信息传播方式远远不能满足用户的实际需求。而在互联网时代,由于互联网技术的快速发展,互联网媒体能够利用大数据技术更好地分析用户的潜在需求,也使得用户的信息需求越来越个性化和定制化。例如,今日头条就在致力于满足用户个性化、定制化的信息需求。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07