
(四)大数据分析优势显著
第一,大数据能够实现分析的高度智能化。当前,我们已经进入智能经济时代,而大数据能够帮助我们实现信息智能化,即能利用有效的工具对数据进行有效的挖掘和专业化处理,进而通过加工实现数据的增值,并实现盈利。大数据的优势在于:一方面实现信息收集和分析的智能化,另一方面实现数据与用户需求的有效匹配。大数据分析的4个关键能力分别为智能预测、高并发处理、统计分析和智能推荐。此外,大数据分析系统一般可以分为建模层、集成层、存储层、处理层、可视化层和数据发布层等6个层次。
第二,及时、迅速。大数据分析改变之前的市场调研和数据分析相对滞后的模式和方式,能够及时、迅速地进行分析。传统的市场调研和数据分析一般都需要半年甚至更长的时间,例如国家人口普查甚至需要一年以上的时间,而基于互联网的大数据分析则能够快速呈现结果。
第三,成本相对较低。传统的市场调研方法,由于需要使用大量的人力和物力,耗资巨大,而大数据由于可以大量使用技术手段,其成本相对较低。
第四,更为准确。传统的数据分析由于很难准确调研用户的行为习惯,一般来说,难以有效精准,而大数据分析则能够有效挖掘用户的真实想法和习惯,其结果也更为准确。
(五)大数据实施的关键
第一,数据的可获得度。目前在国内,大数据的发展严重受制于政府信息的公开性不够,很多数据难以获得,导致难以实现真正的大数据挖掘和分析。
第二,模型建构。模型的科学性直接决定着数据分析的质量,这就要求有高超的建模水平。
第三,观点提炼。为决策提供依据的基于数据挖掘的独到、高质量的观点,高度依赖于高质量的数据解释,这就体现了行业专家的价值。不同的专家对于同一个数据往往会给出截然不同的结论,在房地产市场,任志强、谢国忠都能拿到同样质量的数据,但是其分析结果却有天壤之别。
(六)从数据运营到运营数据
首先,要清楚用大数据做什么。大数据主要解决如下问题:要解决何问题?谁的问题?你能解决这个问题吗?在当下能解决吗?可以用数据解决吗?
其次,用框架做决策。一是确定问题,从解决问题的角度收集数据;二是整理数据,放入数据框架内;三是看框架与决策的关系;四是根据决策行动;五是检查行动是否达到目的。
再次,大数据如何做:混、通、晒、存、管、用。一是“混”,即数据部要和业务部混在一起,混在一起是开展大数据的前提。二是“通”,即带着业务问题看数据或者带着数据来看业务问题。业务问题和数据问题之间的“通”,部门数据和部门数据之间的交叉。通的关键是从事业务问题的和从事数据问题的能够具有相同的话语体系,但是现在无论在传媒业还是在其他行业,多采取的不是同一套话语体系,这就必然导致难以实现大数据与产业的有机融合。三是“晒”,即在获取、使用、分享、协同、连接、组合之上让自己变得超级简单和便捷。为了更好地“晒”数据,一方面需要建立起科学合理的分析框架,另一方面需要善于运用可视化工具,实现分析结果的可视化。四是“存”。必须清楚的是,收集数据不是目的,让收集到的数据产生价值才是目的。任何公司都没有财力和能力收集全部的数据,这就要求公司首先清楚要解决的问题是什么,唯有如此,才能够实现更高的投入产出比。五是“管”,即学会用数据产品来解决获取及使用数据的问题。六是“用”,即对数据的分裂和重组,都能做到颠覆性创新。例如,我们一般把性别分为男和女,而阿里巴巴为了更好地描述用户,则把用户的性别分为十几类。
三、大数据时代下的智能传播
在移动互联和大数据时代下,用户的需求更为个性化和定制化,这就要求我们充分利用大数据技术来实现智能传播。
(一)用户与用户需求巨变
首先,互联网尤其是移动互联用户成为主流。根据中国互联网络信息中心发布的《第34次中国互联网络发展状况统计报告》显示,截至2014年6月30日,中国网民规模达到6.32亿,互联网普及率为46.9%;2014年上半年,网民人均周上网时长达25.9小时;手机网民规模达5.27亿,随着4G的大规模推广和应用,未来的手机网民规模必将迅猛增加。得益于动辄几亿的庞大用户规模,互联网媒体高速增长。2013年,互联网广告收入高达1100亿元,仅比居于首位的电视广告收入少1.1亿元;仅腾讯公司一家,其2013年的销售收入就高达604.37亿元,净利润170.63亿元,是2013年我国整体报业净利润的近2倍。
其次,用户的需求越来越个性化、定制化、精准化。在传统媒体时代,信息相对稀缺,并且由于技术的限制,用户只能接受统一的、标准化的信息,但是这种信息传播方式远远不能满足用户的实际需求。而在互联网时代,由于互联网技术的快速发展,互联网媒体能够利用大数据技术更好地分析用户的潜在需求,也使得用户的信息需求越来越个性化和定制化。例如,今日头条就在致力于满足用户个性化、定制化的信息需求。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23