京公网安备 11010802034615号
经营许可证编号:京B2-20210330
二、大数据面面观
当前,大数据正处于快速发展期,每个人对于大数据都有不同的认识,那么什么是大数据?其基本特征又是什么呢?这就需要我们从多个维度来理解和认识大数据。
(一)何谓大数据
所谓大数据,是指以服务于决策为目的,需要新型数据处理模式才能对其内容进行采集、存储、管理和分析的海量、高增长率和多样化的信息资本。认真分析大数据,其本质体现在如下五个方面:第一,数据量大。相对于传统的抽样调查的数据,大数据无疑是巨大的,尤其是依靠传统的计算手段难以有效计算的。第二,服务于决策。大数据的主要目的是服务于各类决策,能够帮助各类组织和个人大幅度提升决策能力。第三,需要新处理模式。由于大数据数量大且非结构化数据很多,现有的处理模式不能有效处理大数据,需要新处理模式。第四,信息资本。大数据是一种信息资本,而不仅仅是一堆数据和成本。所谓信息资本,是指其能够为政府和企业带来未来经济利益的信息资源,更是和土地、资本、人才等一样的新生产要素。第五,更为复杂。大数据比海量数据更为复杂,海量数据包括结构化和半结构化的交易数据,而大数据除此之外还包括非结构化数据和交互数据。
(二)大数据的特点
大数据在量度、频度、速度、维度和温度五个方面具有显著的特点,具体如下:
第一,在量度方面,具有海量性特点,即大数据规模巨大,当前通常指10TB规模以上的数据量,而且随着数据的迅猛增加,大数据的量级还会进一步增加。
第二,在频度方面,具有高频率的特点,即发生的频率很高,重点在于用户参与与互动而产生的数据。在这方面,传统媒体的发行用户数据的价值就很小,关键在于其发行用户非在线,基本上一年才更新一次。
第三,在速度方面,具有实时性的特点,即大数据能够实时反应。例如,在Google搜索框内输入一个关键词,就能够瞬间呈现与其相关的信息,一旦其反应速度稍有不及,就会有大量的用户流失。
第四,在维度方面,具有全样本、多维度、非结构化的特点,即大数据是全体样本的数据,而不是抽样的数据;大数据是多个维度的数据,而不是单个维度的数据;大数据既有惯常的结构化的数据,也有音频、视频等非结构化的数据,而不仅仅是结构化数据。
第五,在温度方面,具有在线性特点,即大数据是永远在线的,能够随时被调用的,这就要求必须基于用户数量巨大的互联网平台。这些平台记录了用户的行为、情感、思想、爱好与需求,能够科学地分析用户的需求。
此外,可以按照生产的主体不同,把大数据分为商务过程数据(由传统的信息系统产生)、环境状态数据(由传感器产生)、社会行为数据(由社交媒体产生)、物理实体数据(由数字化制造产生)四种类型。当然也可以按照归属主体分为政府数据和企业数据,其中政府数据又分为民意数据、业务数据和环境数据。
(三)大数据蕴含着新思想和新思维
在大数据出现之前的小数据时代,我们只能通过抽样调查的方式来回答“为什么”,即找出“因果关系”,找出事情的前因后果。即使有相关关系的研究,重点也是研究“因果关系”。
在大数据时代,大数据大大拓宽了研究范围,大数据能通过全样本的方式来回答“是什么”,即发现相关关系,这能够帮助我们更好地认识和了解世界。因此,大数据既能处理“因果关系”,又能处理“相关关系”,即不仅能够回答“为什么”,又能够回答“是什么”。
典型的相关关系而非因果关系的案例主要有:沃尔玛啤酒与尿布的混搭;鲨鱼对人类的攻击次数和冰淇淋的销量是正相关的;儿童的蛀牙数量与他们的词汇量是正相关的;在美国,自2004年以来,“体重增加”与“房屋出租”的相关性达到90%。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07