
(二)传统传播、互联网传播与智能传播的比较
我们可以从信息丰富程度、传播模式、信息公开度、及时性与互动性、商业模式等方面进行比较分析(参见表1)。
第一,在信息丰富程度方面。传统传播适应的时代为信息稀缺时代,在该时代信息相对稀缺,无论是报纸、杂志、广播还是电视,只要内容做得好,就能够吸引用户;互联网传播适应的时代为信息丰裕时代,在该时代信息相对丰富,以门户网站为代表的PC互联网媒体,单纯依靠内容已经难以赚取真金白银;智能传播适应的是信息过载时代,在该时代信息过多过滥,过载的信息带来极大的信息噪音,单纯的内容已经难以吸引用户,这就需要传播者提供针对每个用户的个性化、定制化的信息。
第二,在传播模式方面。传统传播是大众式的传播,即一点对多点、标准化的传播;互联网传播则是多点对多点、全立体的、链式的、病毒式的传播方式;智能传播则是多点对一点式的传播方式,即多个信息源来对应一个用户。
第三,在信息公开度方面。传统传播的信息公开度较低,是精英式的传播;互联网传播则信息公开度较高,实现了信息的高度公开和透明,也在很大程度上打破了信息的不对称性;智能传播则实现了传播者和用户两端的高度公开,实现了信息的对称和透明。
第四,在及时性与互动性方面。传统传播一般滞后于信息,及时性不够,互动性更为缺乏;互联网传播较好地解决了及时性,互动性也有了很大程度的改善;智能传播则在信息和用户两端都实现了及时性和互动性。
第五,在商业模式方面。传统媒体的商业模式为
表1
“二次销售”,即第一次通过发行把传媒产品售卖给用户,进而获得传播功能,第二次再把传播功能售卖给广告主;互联网的商业模式为“免费+收费”,即先通过免费的信息和服务来吸引巨量的用户,然后再通过增值业务向某些用户或者第三方收费;智能传播的商业模式则在互联网的商业模式上,进一步实现智能信息直接收费。
(三)智能传播的核心——基于大数据的智能信息匹配
在信息过载的情况下,存在着多就是少的悖论,即过多过滥的信息与能够满足用户的有效信息极度匮乏之间的矛盾。而要解决这个矛盾,真正满足用户个性化、定制化的信息需求,就必须通过数据挖掘和分析技术,打造基于大数据的信息智能匹配平台,在不断优化用户信息需求的基础上,实现信息和用户需求的智能化匹配。这就要求我们做好如下工作:
第一,打造巨型的云信息服务平台,在该平台上,云集着各式各样的信息,既有文字的,又有音频和视频的,并能实现信息的分类筛选、摘编和深度加工。
第二,打造大型的大数据平台,在该平台上能够通过数据挖掘和分析等方式,实现对读者和受众个性化需求的准确定位和把握。[1]
第三,能够通过技术手段低成本地在信息和受众个性化、定制化的需求之间实现智能化匹配,并能通过各种支付手段,实现智能化信息的收费。目前,一些巨型的信息平台已经形成,如Google、Facebook、亚马逊、百度、新浪、腾讯等,也出现了搜索、筛选、推荐等新技术手段。利用技术手段实现精准信息和读者需求的智能匹配进而实现信息的收费将仅是个时间问题。例如,亚马逊通过自己研发的被业界称之为“鬼打墙式的推荐”的精准推荐系统每秒卖出的商品达72.9件,这种精准推荐系统就是跟踪客户的所有消费习惯,不断进行优化。Google和百度利用搜索和筛选手段在一定程度上实现了读者的主动信息需求,而亚马逊等利用推荐手段也在一定程度上满足了读者的被动信息需求,而基于巨型平台的社会引擎将能够实现精准信息和读者需求的智能匹配。
目前,在国内,互联网三巨头BAT(百度、阿里、腾讯)已经在大数据和智能传播方面打下了坚实的基础,这也给其带来了丰厚的收入。例如,阿里巴巴围绕大数据打造出了巨型的信息系统,其广告收入从2012年的98.04亿元高速增长到2014年的297.29亿元。
(四)传媒业大数据实践误区
当前,传媒业虽然高度重视大数据,但是在大数据实践中仍存在多种误区。
第一,依然秉持“内容为王”理念。正如上文所述,智能传播的关键是智能信息匹配平台,单纯的内容已经难以为继,但是很多传统媒体依然单纯从内容上发力。[2]
第二,认为大数据仅仅是工具。很多传统媒体仅仅把大数据当成工具和手段,而没有把大数据当成传媒业的底层架构和标配,这必然导致其在发展大数据的过程中变形。
第三,误把数字化当成数据化。很多传统媒体认为,只要把之前的用户资料和内容资源从此前的纸质版转为数字版就实现了数据化,其实这仅仅是数据化的最浅层工作。
第四,误把新闻可视化当成数据化。很多传统媒体仅仅把数据化当成数据新闻或者可视化新闻,其实数据化是整个系统的数据化,单纯的数据新闻或者可视化新闻都远远解决不了实际问题。
四、智能传播的盈利模式
第一,信息服务收费。由于信息智能匹配能够给用户节省大量的时间,用户必然会对其收到的个性化、定制化信息服务付费,而可以预测,这一块将会有上千亿元的市场规模。
第二,广告。未来,基于大数据的广告能够实现精准投放,则这一块也会有很大的市场。
第三,电子商务。基于大数据的电子商务,将成为智能信息匹配平台的重要组成部分。
第四,舆情增值服务收入。媒体可以给政府、企业等各类组织提供基于大数据的舆情服务,进而获得收入。
第五,网络行政服务。智能传播平台能够为当地政府提供高效的、标准化的网络行政业务,其市场规模也会很大。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23