京公网安备 11010802034615号
经营许可证编号:京B2-20210330
(二)传统传播、互联网传播与智能传播的比较
我们可以从信息丰富程度、传播模式、信息公开度、及时性与互动性、商业模式等方面进行比较分析(参见表1)。
第一,在信息丰富程度方面。传统传播适应的时代为信息稀缺时代,在该时代信息相对稀缺,无论是报纸、杂志、广播还是电视,只要内容做得好,就能够吸引用户;互联网传播适应的时代为信息丰裕时代,在该时代信息相对丰富,以门户网站为代表的PC互联网媒体,单纯依靠内容已经难以赚取真金白银;智能传播适应的是信息过载时代,在该时代信息过多过滥,过载的信息带来极大的信息噪音,单纯的内容已经难以吸引用户,这就需要传播者提供针对每个用户的个性化、定制化的信息。
第二,在传播模式方面。传统传播是大众式的传播,即一点对多点、标准化的传播;互联网传播则是多点对多点、全立体的、链式的、病毒式的传播方式;智能传播则是多点对一点式的传播方式,即多个信息源来对应一个用户。
第三,在信息公开度方面。传统传播的信息公开度较低,是精英式的传播;互联网传播则信息公开度较高,实现了信息的高度公开和透明,也在很大程度上打破了信息的不对称性;智能传播则实现了传播者和用户两端的高度公开,实现了信息的对称和透明。
第四,在及时性与互动性方面。传统传播一般滞后于信息,及时性不够,互动性更为缺乏;互联网传播较好地解决了及时性,互动性也有了很大程度的改善;智能传播则在信息和用户两端都实现了及时性和互动性。
第五,在商业模式方面。传统媒体的商业模式为
表1
“二次销售”,即第一次通过发行把传媒产品售卖给用户,进而获得传播功能,第二次再把传播功能售卖给广告主;互联网的商业模式为“免费+收费”,即先通过免费的信息和服务来吸引巨量的用户,然后再通过增值业务向某些用户或者第三方收费;智能传播的商业模式则在互联网的商业模式上,进一步实现智能信息直接收费。
(三)智能传播的核心——基于大数据的智能信息匹配
在信息过载的情况下,存在着多就是少的悖论,即过多过滥的信息与能够满足用户的有效信息极度匮乏之间的矛盾。而要解决这个矛盾,真正满足用户个性化、定制化的信息需求,就必须通过数据挖掘和分析技术,打造基于大数据的信息智能匹配平台,在不断优化用户信息需求的基础上,实现信息和用户需求的智能化匹配。这就要求我们做好如下工作:
第一,打造巨型的云信息服务平台,在该平台上,云集着各式各样的信息,既有文字的,又有音频和视频的,并能实现信息的分类筛选、摘编和深度加工。
第二,打造大型的大数据平台,在该平台上能够通过数据挖掘和分析等方式,实现对读者和受众个性化需求的准确定位和把握。[1]
第三,能够通过技术手段低成本地在信息和受众个性化、定制化的需求之间实现智能化匹配,并能通过各种支付手段,实现智能化信息的收费。目前,一些巨型的信息平台已经形成,如Google、Facebook、亚马逊、百度、新浪、腾讯等,也出现了搜索、筛选、推荐等新技术手段。利用技术手段实现精准信息和读者需求的智能匹配进而实现信息的收费将仅是个时间问题。例如,亚马逊通过自己研发的被业界称之为“鬼打墙式的推荐”的精准推荐系统每秒卖出的商品达72.9件,这种精准推荐系统就是跟踪客户的所有消费习惯,不断进行优化。Google和百度利用搜索和筛选手段在一定程度上实现了读者的主动信息需求,而亚马逊等利用推荐手段也在一定程度上满足了读者的被动信息需求,而基于巨型平台的社会引擎将能够实现精准信息和读者需求的智能匹配。
目前,在国内,互联网三巨头BAT(百度、阿里、腾讯)已经在大数据和智能传播方面打下了坚实的基础,这也给其带来了丰厚的收入。例如,阿里巴巴围绕大数据打造出了巨型的信息系统,其广告收入从2012年的98.04亿元高速增长到2014年的297.29亿元。
(四)传媒业大数据实践误区
当前,传媒业虽然高度重视大数据,但是在大数据实践中仍存在多种误区。
第一,依然秉持“内容为王”理念。正如上文所述,智能传播的关键是智能信息匹配平台,单纯的内容已经难以为继,但是很多传统媒体依然单纯从内容上发力。[2]
第二,认为大数据仅仅是工具。很多传统媒体仅仅把大数据当成工具和手段,而没有把大数据当成传媒业的底层架构和标配,这必然导致其在发展大数据的过程中变形。
第三,误把数字化当成数据化。很多传统媒体认为,只要把之前的用户资料和内容资源从此前的纸质版转为数字版就实现了数据化,其实这仅仅是数据化的最浅层工作。
第四,误把新闻可视化当成数据化。很多传统媒体仅仅把数据化当成数据新闻或者可视化新闻,其实数据化是整个系统的数据化,单纯的数据新闻或者可视化新闻都远远解决不了实际问题。
四、智能传播的盈利模式
第一,信息服务收费。由于信息智能匹配能够给用户节省大量的时间,用户必然会对其收到的个性化、定制化信息服务付费,而可以预测,这一块将会有上千亿元的市场规模。
第二,广告。未来,基于大数据的广告能够实现精准投放,则这一块也会有很大的市场。
第三,电子商务。基于大数据的电子商务,将成为智能信息匹配平台的重要组成部分。
第四,舆情增值服务收入。媒体可以给政府、企业等各类组织提供基于大数据的舆情服务,进而获得收入。
第五,网络行政服务。智能传播平台能够为当地政府提供高效的、标准化的网络行政业务,其市场规模也会很大。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07