京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代下的智能传播及其盈利模式
信息开放、摩尔定律、社交媒体、数据挖掘技术把我们带入大数据时代,大数据具有量度、频度、速度、维度和温度五个方面的显著特点,并致力于为决策服务。大数据也给传媒业和传播带来了革命性的变化,为了更好地满足用户更为个性化和定制化的需求,传媒业必须从信息稀缺时代的大众传播、信息丰裕时代的互联网传播,快速转变为信息过载时代下的智能传播。而要实现智能传播,关键在于打造基于大数据的信息智能匹配平台,在不断优化用户信息需求的基础上,实现信息和用户需求的智能化匹配。智能传播具有潜力巨大的混合型盈利模式,主要包括信息服务收费、广告、电子商务、舆情增值服务收入和网络行政服务等。
【关键词】大数据;信息智能匹配;智能传播;信息过载
2013年,是大数据和移动互联元年,标志着我们已经进入大数据和移动互联时代。在大数据时代,用户对信息的需求更加个性化、精准化,借助于数据挖掘和分析技术,传播体现出智能化的趋势,而其盈利模式日趋混合化和多元化。
一、大数据时代到来的原动力:信息开放
(一)技术赋权:四次传播革命助推信息开放
从远古到现在,我们经历了文字的发明、古登堡印刷术、电报技术的应用和互联网四次传播革命,每一次传播革命都使得信息的数量和公开程度快速增加。
第一,文字发明打破了时间的限制,使得代际传播成为可能。在文字发明之前,传播只能通过口口相传,信息量极其有限,讲古人也具有很大的权力。在公元前4000年楔形文字出现之后,文字发明带来的第一次传播革命使得代际之间的传播成为可能,也使得信息数量开始大幅度增加。
第二,古登堡印刷术打破了范围限制,使得大范围传播成为可能。在古登堡印刷术出现之前,书籍主要依赖掌握文字的抄书人,一方面,由于抄书人的数量很少,信息积累和传播的范围受到很大的限制;另一方面,抄书人具有很大的权力,甚至比一些王公贵族的权力都大。1450年,古登堡的印刷术,给世界带来了第二次传播革命,此后的50年间,大约有800万本书被印刷,比之前所有的手抄本还多。这些书籍帮助更大范围的人获取知识和信息,使得更大范围的精英能够更好地获得信息。
第三,电报技术打破了时间和距离的制约,使得大范围远距离的传播成为可能。电报技术的发明,带来了第三次传播革命,使得千里之外的信息瞬息可至,不仅大大加快了信息的传播速度,信息的数量也急速增加,使更多的人能够更好地获得信息。
第四,互联网技术打破了为精英所控制的大众传播限制,使得及时、互动的自媒体传播成为可能。发轫于1989年的万维网,带来了第四次传播革命,借助于互联网技术,人人都可能成为自媒体,人人都可以拥有麦克风,一方面打破了信息由精英控制的局面,在很大程度上赋予普通人传播信息的权利;另一方面,由于社交媒体等的推崇,信息数量急速增加,根据ZDNet的数据显示,2013年中国产生的数据总量超过0.8ZB,是2012年的2倍,相当于2009年全球的数据总量。
(二)三大成因汇成大数据时代
第一,摩尔定律使得人类保存数据的能力大大增强。摩尔定律是由英特尔创始人之一的戈登·摩尔于1965年提出来的。其内容为:当价格不变时,集成电路上可容纳的晶体管数目,约每隔18个月便会增加一倍,性能也将提升一倍。在摩尔定律的推动下,价格以更快的速度下降,即在存储器的性能提高的同时,大约每9个月存储容量的价格就下降一半。这一方面使得人们可以有更大、更快的数据保存能力,另一方面也使得人们能够承担起保存数据的成本。根据相关数据显示,1990年至2013年,计算成本平均每年下滑33%,1MM的晶体管从527美元下降到5美分;存储成本平均每年下滑38%,1G的存储成本从569美元下滑到2美分;带宽成本平均每年下滑27%,1000M的带宽成本从1245美元下滑到16美元。
第二,社交媒体的出现使得人类生产数据的能力增强。Facebook、Twitter、新浪微博、微信等社交类媒体使得每个用户都可以发表自己的言论,并以其及时、互动实现传播效应最大化的特点,使得人们生产数据的能力大大增强。例如,Facebook用户每分钟分享的内容高达246万条,Youtube用户每分钟上传72小时的视频,Twitter用户每分钟发布27.7万条信息。
第三,数据挖掘能力使得人类使用数据的能力大大增强。目前,主流的相关技术主要有以MapReduce和Hadoop为代表的非关系数据分析技术。
(三)政府数据公开力度加大
首先,国际信息公开已初具规模。美国等西方发达国家大力推进数据开放运动,2011年9月20日,美国等8个国家在纽约发起“开放政府联盟”,以向本国社会开放更多的信息。目前,该联盟已经有50多个会员,30多个国家建立了公共数据的开放网站。2012年3月,奥巴马政府公布“大数据研发计划”,以提高和改进人们从海量、复杂的数据中获取知识的能力,发展收集、储存、保留、管理、分析和共享海量数据所需要的核心技术,大数据成为全世界关注的焦点。例如,在美国的“蓝纽扣”计划中,用户可以使用“蓝纽扣”获取个人健康信息,以便管理其健康、经济状况,并与信息提供方交换信息。目前,已有超过1.5亿的美国人能够从健康服务企业、医药实验室、零售药房供应商与州免疫信息数据库获得他们所需要的个人健康数据。
其次,我国也在加快数据开放步伐。国家统计局推出了国家数据开放工程,广东、上海、北京等地都在加快数据开发进程,但是和发达国家相比,开放程度仍然极低。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07