京公网安备 11010802034615号
经营许可证编号:京B2-20210330
白酒大数据时代我们如何抓住数据信息_数据分析师考试
传统行业如何拥抱白酒大数据时代中国白酒行业,是市场竞争最为充分的领域之一。今天,中国白酒线上销售量虽然只有1.5%左右,但其潜在的市场空间与品牌效应却不可小看。互联网时代的到来,不仅给很多白酒代理商灵活运用互联网思维的新品牌带来了空间,也给中国第一时尚小酒品牌拇指酒这样的大型企业带来了新的动力。拇指酒运营中心提出:我们必须主动拥抱趋势,勇于改革创新,才能做互联网时代的强者。
互联网时代,尤其是移动互联网的到来,不仅加速改变了信息流通的方式,也彻底颠覆了传统的商业模式。在这个大背景下,我们必须打破线上线下的界限,打造新的商业生态。
这种生态要求我们必须学习掌握“互联网思维”,着力构建线上线下优势互补的商业模式,让消费者的线上支付与线下体验产生积极的协同效应;必须努力实现线上交易和线下体验的无缝链接,建立从实体店到数字店之间的“全渠道零售”框架;必须完善物流配送,建立更方便、更快捷、更安全、更灵活的发货模式;必须针对互联网商业特点,全面提升质量管控水准。
未来,线上线下交互的购物形式将成为主流趋势。因此,无论是线上还是线下商家,只有了解顾客的消费习惯,针对消费者的需求,在注重产品综合要素的同时,给予他们最佳的消费体验,实现线上线下的无缝对接,才能在“互联网+”时代有所作为。
大数据时代社会的最大特点将是创新。不仅在于你拥有多大规模的数据量,而且更重要的是在于你对手中数据的收集、储存、分析、整理与应用能力,这需要我们正确理解大数据。
拇指酒运营中心通过微信二维码让消费者可以随时随地査验每一瓶拇指酒的品名、规格、生产批次、生产日期、销售渠道等信息,这就是大数据的运用。但它只涉及到了其中的一部分,就是产品的流通领域部分,而且只体现出了数据的对外传递以供消费者识别部分。
白酒大数据时代我们如何抓住数据信息?做酒水大数据的时代来了,要想成功实现整合大数据得到有效数据必须具备四个条件:
首先:依托一个省级酒水门户网站,将省内规模以上的酒企的产品全部录入,供网友点评。
其次:是通过微博、微信、百度贴吧以及社区论坛等,将年轻一代网友中的酒友合理的引流到门户网站。
再次:不断通过线下的品酒微聚会,将年轻人交友、文化交流以及酒水文化等需求有机结合在一起,然后通过建立QQ群等,将数据提供人牢牢的黏合在网站上。
最后通过建立行之有效的积分商场,让酒友通过点评酒水,分享心得甚至改编词条,都可以获得积分,最终积分可以换取相应的酒水,通过这样的激励,最终实现网站的人气爆棚。
大数据是一座还未完全被挖掘的金山,如何系统的开采,还需要专业的人做专业的事,将一个个“圈子”有机黏合在一起,最终成为系统的社会化营销。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06