京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据成为电商打假利器_数据分析师考试
消除信息不对称、建设信用制度、简化透明渠道、降低鉴定成本……以上这些,都是国内电子商务平台常用的打假手段。而通过分析可以发现,这些措施或多或少地都和大数据相关联。
或者说,在电商打假领域,由于大数据的特殊性质,导致这几种措施发生了量变甚至质变,发展出了一整套新型的打假模式,我们称其为大数据打假,它具有以下几个方面的显著特点:
首先,大数据打假是基于数据的智能化打假。它具有的优势有:通过主动防控措施可以实现防患于未然;最大限度地实现信息公开透明,使侵权人无处藏身;对于细小分散的违法案件,可以实现并案处理,加大了处罚和打击力度;由于信息的可追溯,可以通过智能化手段提高打假的效率和准确度;利用物联网和“一品一码”,可以实现全过程的监控。这些措施和效果,都是线下的打假活动无法实现的。而且,在网络上打假的另一个优势,是网上的所有行为都记载在案,可有效运用大数据的手段进行分析、汇集和整合,从而发现蛛丝马迹,使制假售假者无处遁行。
比如微信。2014年12月,腾讯在反信息诈骗联盟成立一周年之际,又推出腾讯手机管家天下无贼2.0版本,并发布反信息诈骗白皮书,力图打通大数据建立精准反诈骗平台。腾讯副总裁罗道锋透露,反信息诈骗平台上线一年,收集的用户举报、标记的诈骗电话、诈骗短信数量均超过了7000万。
其次,大数据打假是基于实人认证的打假。比如阿里巴巴,它的实名认证体系包括淘宝注册、支付宝账号绑定认定、开店须用身份证认证、利用手机或数字证书的二次认证、复核这五个环节。
再者,大数据打假是防患于未然的打假。由于大数据打假是基于互联网、物联网、大数据等高科技手段和完整的信用体系而建立的,通过大数据分析,很多情况下都可以预见到侵权违法现象的发生,从而起到提前预防的作用,减少损害。这也是大数据打假不同于一般线下打假模式的重要特点之一。
2013年,淘宝网在主动打击假货方面运用了一系列人性化的处理,例如在商品发布的时候,对可能涉及侵犯知识产权的用户进行提醒。同时,还建立了一个“体检中心”,对可疑的商品,会进行拦截并放入“体检中心”,同时提示卖家进行调整或者提供申诉的材料。通过一系列的卖家转型计划实施,包括一些线下的面对面的辅导和帮助的实施,并在处罚与教育相结合的过程中,进行“初犯”教育和警示,实施“累犯从重”的管理方式,已有25%的售假卖家不再出售假货。
再者,大数据打假是基于统一大市场的打假。我们不妨问这样一个问题,市场集中度的高和低,哪样更有利于打假?显然答案应该是前者,当万千假货藏身于千店万市的时候,打假的成本之高、难度之大可想而知。
电子商务恰恰给予了我们这样一个绝佳的打假机会,不需要任何成本,只要辅之以足够给力的技术手段,至少表象层面的假货都会一览无余,这难道不是我们打假和根治假货问题千载难逢的时机吗?
而且,大数据打假是网民广泛参与、运用互联网思维的打假。首先,电子商务助力打假的另一个重要方面就是群策群力,充分发挥广大网民的力量。比如淘宝,目前它既有“神秘买家”制度,又和众多的专业检测机构合作,与3万多名权利人、数十家行业协会和国际组织合作,织成了一张打假的巨大罗网。
此外,大数据打假是自下而上的打假。发达的市场经济和商品经济,带来的一个弊端就是假冒伪劣的易发。基于这种特性,假货的治理往往只依靠法律是不够的。“高大上”的法律,对于深藏于每一个乡村和山沟的生产作坊而言,难免有种“天高皇帝远”的感觉。将小生产者组织起来,一起提高质量、创立品牌、规范流程等工作,无法靠法律实现。这时候我们就应该看到,在国外的假货治理中的重要角色——商会,像德国的法兰克福商会、科隆商会等,都有着成功案例。在我国治理假货的成功经验中,广西宾阳、浙江温州当地的商会和协会也都发挥了重要的作用。
而今天的电子商务时代,基于网络的商盟不断涌现,再辅之以网规和信用的作用,一种全新且有效的自下而上的治理模式正在形成,成为网络打假的生力军。所以,在打假这个典型的治理问题面前,政府一定要抛开传统的亲力亲为治理模式,运用互联网思维,调动最多的力量帮助自己,才有可能在根本上开创崭新的局面。
最后,大数据打假是面向信息社会的治理模式。笔者比较了线上线下两种治理模式的主要区别,归纳出4种治理要素:主体、客体、内容和载体。主体、客体和载体存在虚拟化和跨区域和行业的变化;内容存在多样化和个性化、海量、即时的变化;在治理手段上,需要解决虚拟化、跨区域和行业以及海量、个性化等问题。这些挑战都是线下所不存在,需要在治理理念、手段和组织架构等方面不断创新,探索真正适合电子商务的监管模式。
更进一步可以发现,第一,线上的治理手段更多样。比如,像淘宝规则里例如“扣分”“关小黑屋”、限制上线新产品数量等等这样的治理手段,在线下是不可想象的;第二,线上的治理分布比较均衡,而线下的治理集中在交易后,交易前和交易中的办法不多;基于信息透明和交易记录,线上可以带来很多防患于未然的措施;第三,线上的治理是多元化治理:包括主体多元和手段多元两个层面;第四,线上的治理是全方位的,线下往往只监管卖家,无法监管买家,而线上的买家也可以有信用记录,可以设置“黑名单”,对于职业差评师等,也可以有法律责任追究机制;第五,线上治理的对象更多,虽然线下也会有商场、支付等服务者,但线上又多出了交易平台、第三方支付、物流配送、网络接入、电脑手机厂商、软件厂商、搜索引擎等诸多新的主体;第六,线上的治理是跨时空的,有很强的延展性。跨空间很好理解;所谓的跨时间是指所有以前的交易记录都有据可查,以后的交易也可以通过信用来控制。而线下的治理停留在一个时空的特定节点,伸缩性很差,基本就是“就事论事”。
总之,笔者认为,互联网的自我进化和自我修复的能力远超我们的想象。今天,围绕电子商务的信用、支付和物流的服务明显好于网下的相应服务,尤其体现在透明度、碎片化、即时性和人性化服务等方面。
随着云计算、大数据、互联网金融、菜鸟物流、芝麻信用、打车软件、网上挂号、网上司法拍卖、网上订餐的不断推出,这些“出生”于网络的事物已经开始走出虚拟世界,帮助我们解决网下的那些老大难问题,提升网下的服务。基于互联网的草根性、众包和创新力的治理模式,一定会全面帮助我们改善物理世界的治理,实现国家治理体系和能力的现代化。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12