京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用城市大数据推进智能城市建设_数据分析师
智能城市也叫iCity。它的中国定义,已基本不同于IBM的“Smart City”,他们想做的是城市IT的smart系统,而中国则需要构建的是智能发展的城市,要将我国新型城镇化、深度信息化和工业化升级版深度融合。
其实,在2009年8月,IBM发布的《智慧地球赢在中国》就量身打造了六大智能解决方案:智慧电力、智慧供应链、智慧银行、智慧医疗、智慧城市、智慧交通。这些智慧方案,已经陆续在我国许多城市展开。
当前,我们中国的iCity发展正处于“四化”交集上。十八大号召,促进工业化、信息化、城镇化、农业现代化同步发展。iCity将深入推动信息化与城镇化、工业化之间的融合,具有全局意义。
因此,中国“智能城市”建设也应走中国特色道路。2012年,中国工程院立项了重大咨询研究项目《中国智能城市建设与推进战略研究》,其中智能城市的重点建设内容分5个部分:城市建设的智能化发展、城市信息的智能化发展、城市产业的智能化发展、城市管理的智能化发展以及城市人力资源的智能化发展。
这5个部分的重点建设内容,我们要怎么做呢?首先,要从应用着手,以实用性为目标,抓中国城市的核心问题和主要矛盾并解决;其次,要加强物联网,建设传感器网络,加强三元世界的彼此连接;最后,要打通大数据,打通数据孤岛,运用大数据,推进高水平应用和高水平决策。总的来说,我们应该用城市大数据和云平台来着手解决各种智能应用系统,如智能医疗、智能电网、智能交通等。
感知城市将成为城市努力打造的新名片
物联网是新一代信息技术的重要组成部分,也是信息化时代的重要发展阶段。实际上,它是互联网的延伸。因此,加强物联网必须先提高城市的网络带宽。在北京的“十二五”规划中,提升信息基础设施建设是一项重要内容。
此外,城市是国家战略的起始点和落脚点,面对源于能源消耗、交通运输等环节的严峻挑战,信息化成为形成城市核心竞争力的重要抓手。鉴于此,美国、德国、新加坡等国纷纷启动智慧城市、智能城市建设,而我们中国也提出了感知城市概念,推动着物联网、云计算等新一代信息技术思潮向政府和企业行动的转变。未来,感知城市将成为城市努力打造的新名片。
在中国,时值“十二五”开局之年,在调结构、转方式的国家战略发展要求下,感知城市建设已全面启动,这一热潮正改变着新一轮城市发展格局。
互联网的高速发展带动了物联网的发展,我们以物联网技术推动城市规划、建设、管理和服务智慧化,可以让城市变得更加安全、便捷、高效、绿色、和谐和幸福,形成以物联网助推智慧城市建设的特色道路,以此感知城市。
当然,物联网除了感知城市,也在感知物理世界、感知人类。越来越多的穿戴式设备正在向人机一体化方向发展,它们和手机及互联网+相连,将推动预防医学的发展。
智能城市离不开大数据的支持
大数据时代的到来,正悄然改变着人们的生活。得益于大数据的海量储存、分析与处理,人们能够运用大数据实现遥不可及的梦想。公共交通系统的动态数据公布后,可以通过手机APP为公众出行提供意见和方案,也能为交通高峰期调配出更优方案。
智能城市之所以迷人,在于它能为人们提供更安全的居住环境,更准确的交通状况,以及更方便的生活体验,而要做到这些,离不开大数据的支持。不管是智能交通、智能安防,还是智能家居,大数据都是支持其运转的核心。
而大数据的主体是城市大数据,这涵盖了城市建设、环境、企业产业、教育、医疗卫生、食品、文化等多方面。那么,谁有能力聚集和联接这些数据呢?是公司,公共机构,还是政府?
对此,我认为,这要依靠权威机构、技术和市场的合作。比如,数字图书馆、商业数据中心、证券数据中心、铁路数据中心等。其中,政府应在城市大数据的管理与开放中起主导作用。这主要表现在:促进知识服务业发展,创造新的市场与技术;确保个人信息不受侵犯、公共信息安全与共享;提高城市管理能力与决策水平,更好为市民提供服务。中国工业化与城市化的环境和政府结构很有利于发展城市大数据。如果做得好,中国可以用城市大数据来深化智能城市的发展。
可以预见,未来大数据将遍布智慧城市的方方面面,从政府决策与服务,到人们的生活方式,再到城市的产业布局和规划,以及城市的运营和管理方式,都将在大数据支撑下走向智慧化,大数据将成为智慧城市的引擎。
所以,我说iCity是中国的机遇,因为这恰好与中国的管理结构相吻合。对于中国强大的市政组织力量,iCity是个极妙抓手,在推动城市又好又快的发展中,大有用武之地。我们应当用好智能城市在中国具备天时、地利、人和的独特优势,用城市大数据推进智能城市建设。
新闻背景:
5月19日,“中国云谷 梦想启航”高峰论坛在安溪举行。论坛上,中国工程院院士潘云鹤深入畅谈互联网+下的城市大数据,提出要用城市大数据推进智能城市建设,受到广泛关注。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29