京公网安备 11010802034615号
经营许可证编号:京B2-20210330
制造业如何应对大数据管理 融合方案有新招
在如今的大数据时代,对制造行业而言,存在着极大地挑战如何满足这类客户的数据管理的需求呢?融合基础架构作为一种新型的存储解决方案正好可以解决制造行业面临的问题。
制造业的挑战
对制造行业而言,随着其业务的增加,其数据中心正不断扩大,来自企业生产、管理、销售等多个部门的数据一直源源不断地归纳到数据中心之中。尤其是在面对数据量的几何级别增长以外,海量数据的存储归档、对数据的实时访问和调取也为企业IT网络系统带来了压力。
制造行业客户亟需采用一套更加灵活、稳定和可靠的整体解决方案。正如安靠封装测试(上海)有限公司IT经理徐炯介绍的那样:“作为安靠科技世界第二大的半导体封装和测试外包服务业独立供应商的直属子公司,随着国内封装市场需求的增长,他们面临着很多新的需求。
首先,在虚拟化方面,需要新的IT平台能够提供对VMware平台数据存储的支持,来提高ESXi业务恢复效率;在存储方面,要同时具备NAS和SAN功能,来满足虚拟化平台的数据存储要求;在服务器方面,由于刀片服务器发生故障更换需要较长时间来恢复业务,新的IT平台需尽可能减少和缩短业务恢复时间并提高系统可靠性,保证关键型业务应用的响应时间” 这也是同类型制造企业面临的共同需求。
融合方案显神通
那么,究竟要如何满足上述类型客户自身业务发展需要,以及对现有IT平台升级的要求?
据徐炯介绍,他们采用了NetApp FlexPod融合基础架构作为解决方案。“NetApp FlexPod整合了思科统一管理、统一计算、统一Fabric、NetApp统一存储,并结合虚拟化桌面架构,实现了安靠技术数据中心物理和虚拟资源的池化,这也解决了其虚拟化平台的应用所带来的压力挑战,使得各部门能够快速地访问、调用数据,而且IT部门也可统一管理不断增长的数据。”
图:安靠技术FlexPod解决方案
值得一提的是,在部署FlexPod解决方案之前,安靠技术已经部署了NetApp存储系统,因此NetApp FlexPod的横向拓展功能能够支持其统一管理之前的NetApp存储系统,并且可以平滑、无中断地拓展至更多NetApp存储,为安靠技术应对今后业务版图的扩大和数据的高速增长留下空间,减少额外的投入。NetApp存储系统所具有的高稳定性和拓展能力也是其继续选择NetApp FlexPod的重要原因。
徐炯表示:“NetApp FlexPod极大减轻了数据中心的网络压力,帮助我们简化了维护工作,并提供了可靠的业务支持。”
实现高效的方案
在部署了FlexPod融合基础架构之后,安靠技术的IT平台具备了NAS和SAN功能,同时满足统一架构部署,“NetApp FlexPod融合基础架构可以同时提供万兆NFS的数据存储共享和SAN-BOOT的远程启动ESXi服务器,通过SAN架构来提供ESXi系统启动服务,并通过NAS提供VMware对数据存储的访问需求。”实现数据的集中管理,提升管理效率。降低部署和管理成本,NAS-SAN的统一架构降低了IT的部署和管理成本,NetApp FlexPod架构将思科刀片服务器部门的服务器配置和硬件分离,由此可在短期内完成服务器的更换,缩短了业务恢复所需的时间。并且支持横向拓展,为未来拓展预留空间。
现在,安靠技术不但减少了升级IT平台所需的成本,而且有效降低系统业务恢复时间,我们只需要重新指定映射关系即可恢复业务,降低了宕机时间的影响;同时具备的NAS和SAN功能也让安靠技术解决了IT平台最特别的需求。这一案例值得制造行业借鉴。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24