京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代法院调研的创新_数据分析师
人民法院的调查研究工作是人民司法事业的重要组成部分,对推动人民法院的科学发展至关重要。当前,人民司法事业面临着前所未有的机遇和挑战,人民法院的调查研究工作应借助大数据理念和思维进行理论和实践的创新。
大数据时代,数据信息是国家的宝贵财富和战略资源,经济社会各个领域的发展和成败决定于对数据信息的驾驭程度。
人民法院的调查研究工作是人民司法事业的重要组成部分,对推动人民法院的科学发展至关重要。当前,人民司法事业面临着前所未有的机遇和挑战,人民法院的调查研究工作应借助大数据理念和思维进行理论和实践的创新。
调研理念的创新。数据信息产生于人类活动行为而又能反过来服务、引导人类活动行为。大数据时代人民法院的调研活动应树立大数据、大调研、大服务的理念。首先,形成尊重和重视数据的意识,做到任何决策、管理、改革都心中有数,不仅重定性分析而且重定量分析,保证决定的科学性和准确性。其次,大数据时代的特征是各个领域、各个组织或主体之间信息生产、交换和利用的互通共享性,人民法院的调研也是如此。应防止审判与调研两张皮现象,即审判业务部门的法官既是审判员又是调研员,调研是审判工作的延伸和提炼,是更高层次的审判,两者应当良性互动,信息共享,互相促进。再次,从单纯的为领导决策、法院管理服务到为法官服务的转变。尤其是随着我国司法改革的深入,法官依法独立行使审判权的环境越是宽松,越是需要借助调研提升法官司法能力和学习能力。同时,人民法院的调研是全面深化改革和全面推进依法治国事业的重要内容,不仅服务于自身审判工作和科学发展,还应从更高更广的视野上,服务经济社会发展。
调研方式的创新。开座谈会、实地观察、书面调查、资料收集等都是传统的人工调研方式。利用互联网收集数据信息是大数据时代的主要调研方式,与传统调研方式相比,有样本全、费用低、效率高、数据准等优点。较为常见的网上调研是在线调查、计算机辅助电话咨询、Email问卷调查等。当前,人民法院的调研更多的是人工调研,利用网络调研的意识尚未形成,相应的实践比较匮乏。随着人民法院信息化建设的推进,在不久的将来,一些有关审判实务、司法改革的问题完全可以通过人民法院的各种信息平台、案件管理流程系统、数据信息系统收集数据、分析问题、寻找对策。
调研对象的创新。样本采集分析是传统的调查研究,是利用有限的样本信息来调查对象的整体情况,如抽样调查、重点调查和典型性调查等。大数据时代的调研更侧重于全样本分析,即调研对象具有全面性和完备性,或者既是部分性,也是根据随机原则抽取样本推断而成的统计数据,从而具有较强的代表性。例如,如果通过执法检查掌握环境法律法规实施情况,传统的调研主要是组成一个或若干调查组,赴一地或多地实地访谈、座谈和考察,尽管收集的是第一手资料,但由于采集样本的局限性,可能造成调研结果的不全面、不准确。相反,如果通过环境执法部门的环境执法案件信息系统收集数据信息或通过对环境司法部门办理环境案件统计分析,得出的结论会相对全面和准确。由此可见,在大数据时代,全国法院几十年来积累的案件统计信息和裁判文书蕴含的巨量信息是人民法院调研的宝藏,随着信息技术的逐渐成熟,对这些信息资源挖掘和利用将成为人民法院调研重大转变方向。
调研方法的创新。因果关系分析和逻辑推理是传统调研的重要方法,由于人们认识能力的局限性,分析和推理的结果往往需要实践检验和修正。在大数据时代,事物之间因果关系的分析在某些方面就不如相关性分析重要了。例如,沃尔玛啤酒加尿不湿捆绑销售的例子,就是得益于在海量的销售信息中发现了啤酒和“尿不湿”消费行为的相关性。又如,美国公路安全部门和执法部门通过联合执勤,共同治理交通事故和犯罪,实现交通事故率和犯罪率的双双下降,就得益于统计数据显示出20多年来犯罪率数据与交通事故率数据之间的关联性,也就是交通事故和犯罪活动无论是高发的地带,还是高发的时段都有高度的重合性,这才引起了联合执法。人民法院审理的案件信息是经济社会发展的晴雨表,一个裁判文书往往有上百个信息项,每年乃至几十年全国法院“生产”的裁判文书就会形成海量信息,这与海量的经济社会信息必然有很多关联性,利用互联网、云计算等技术手段,对这些海量数据进行收集、整理、归纳、分析,不仅有助于我们解决审判难题,掌握司法规律,还有利于便捷地找到社会治理的方式方法。
调研导向的转变。总结经验、剖析现实、提出建议是传统调研的主要目的。在大数据时代,由于海量数据信息的存在,调研更注重动态跟踪和持续性,更倾向于预测性分析,目的是掌握事物发展变化的趋势、前景等。新时期,人民法院的调研也应重在前瞻性,尤其是全面建成小康社会、全面深化改革、全面依法治国、全面从严治党的形势下,要求人民法院调研工作更应紧紧围绕党和国家工作大局和法院工作全局的新情况,把握审判工作中的新动向,善于捕捉一些苗头性、倾向性、普遍性问题,并能准确洞察其演变和发展趋势,及时为司法改革方案设计和科学司法决策提供依据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28