
2016考研择专业定院校 看准“6大数据”_数据分析师
考研择校择专业是一大要事,怎么选专业定院校呢?用数据说话是最好的途径。跨考名师提醒各位考生在报名定院校专业前先做好6类数据的调研,做好分析对比再下手。
一、招生人数
招生人数决定了总容量。如果太小,从一开始就决定了要采取挤进去的策略。如果较大,相对来说机会也就多出很多。当然,这不是绝对的。有些冷门专业招的人少,但也报的人少,甚至报不满。有的名校热门专业,招的人不多,但是报考每年都很火爆。
一般情况下招生单位各专业的招生人数变化不会很大。近几年,研究生的规模一直在扩大,招生人数总趋势当然也是在上涨。具体到招生单位,基本也是在小幅度上涨。缩减招生名额甚至撤销某个专业的情形很少发生。口说无凭,我们还是看数据。
上图是该院2014年的招生人数。学术型一共招371人,专业学位214人,总共585人。再来对比一下2015年该院的招生数据。
简单比较可以发现,今年相比上一年净增加173人。其中学术型增加45人,专硕增加128人。当然,这也与今年的推免生新政策有关系。推免生有493人,那么统考生一共有265人。虽然推免生增加,但是,总的机会也增加了不少。
二、报考人数若能知道这个数据,就能知道自己的竞争对手到底有多少。然而,当年的报考人数一般看不到,只能看到前几年的数据。不过这些也足以判断出某个学院专业的竞争激烈程度。如果报考人数太多,推免的也不少,留给统考生的机会相对较少,那么该专业竞争很激烈。难度无疑大了很多。
三、录取人数
这里的录取人数指的是复试完最终的录取人数。这个与前一年公布的“招生人数”可能有些出入。特别是一些名校的热门专业,竞争激烈难度大,可能存在“大小年”现象。如果碰到生源特别好,那么也有可能扩招几个名额。所以,机会总是有的,关键是看考生的综合实力和表现。
四、报录比
真实的报考人数和录取人数作对比,就得出每年的招生报录比。这是一个很重要的数据,是衡量某个专业报考热度的核心指标。如果报录比一直居高不小,说明该专业持续很热。如果忽大忽小,这就说明存在大小年现象。以下是上交大电院近几年的报考人数、录取人数和报录比,同学们感受下。
上述表格数据是上交大电院2013年和2012年的报考录取数据(2014年尚未公布)。总的说来,上交大电院学硕比专硕的报录比高出不少,其中电子信息科学与技术和计算机科学与技术及仪器仪表工程(专硕)这三个专业呈上涨趋势。这就意味着竞争更加激烈。
其他专业变化幅度很小,只有计算机技术(专硕)专业是个例外。2013年最终录取35人,报考只有29人,多出6人。这6名考生从哪里来?笔者猜测,很有可能是在复试过程中从报考计算机科学与技术(学硕)专业的考生中调剂过来的。所以只要成绩足够优秀,就有机会。
五、推免人数
上交大电院在近几年招生目录中只说明推免总人数,具体到各个专业有多少人不得而知。其官网也没有公示推免生名单。不过笔者在上交大船建学院发现了该院2014年的推免生名单。下面就分专业整理一下。
对比船建学院2014年招生人数:总共211人,其中学术型131人,专硕80人。即可得知统考生一共111人,其中学术型69人,专硕42人。如果有更多的数据就可进一步得知具体每个专业统考生有多少。这样就能深入了解上交大具体某个专业的报考情况。
推免生数据一般会在每年10月正式报名的时候公布。所以,建议考生在报名时最好核查一下所报院校专业的推免情况。如果某个专业推免人数太多或者全部是,那就要慎重选择或者重新报考。否则,可能面临严峻挑战,甚至从这个时候就已经没有被录取的机会。
六、复试分数线
复试线的重要性在这里不用多说了。大部分招生单位都会公布这些数据,或者在研究生院,也有的在各自院系以通知的形式发布。上交大属于34所自划线高校,每年一般会在3月初就公布各个院系专业的复试线。
在这里要强调一点,过了复试线只是意味着有机会参加复试,并不一定能被录取。所以这里面还有一个最低录取线。这条线肯定比复试线稍高一些。因此,考试点考研专家提醒同学们一定要清楚,考研复习要多下功夫,初试一定要考过复试线。如此,才有可能取得最终的成功。仅仅过了复试线还是比较危险。成绩是王道,加油吧!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29