京公网安备 11010802034615号
经营许可证编号:京B2-20210330
2016考研择专业定院校 看准“6大数据”_数据分析师
考研择校择专业是一大要事,怎么选专业定院校呢?用数据说话是最好的途径。跨考名师提醒各位考生在报名定院校专业前先做好6类数据的调研,做好分析对比再下手。
一、招生人数
招生人数决定了总容量。如果太小,从一开始就决定了要采取挤进去的策略。如果较大,相对来说机会也就多出很多。当然,这不是绝对的。有些冷门专业招的人少,但也报的人少,甚至报不满。有的名校热门专业,招的人不多,但是报考每年都很火爆。
一般情况下招生单位各专业的招生人数变化不会很大。近几年,研究生的规模一直在扩大,招生人数总趋势当然也是在上涨。具体到招生单位,基本也是在小幅度上涨。缩减招生名额甚至撤销某个专业的情形很少发生。口说无凭,我们还是看数据。
上图是该院2014年的招生人数。学术型一共招371人,专业学位214人,总共585人。再来对比一下2015年该院的招生数据。
简单比较可以发现,今年相比上一年净增加173人。其中学术型增加45人,专硕增加128人。当然,这也与今年的推免生新政策有关系。推免生有493人,那么统考生一共有265人。虽然推免生增加,但是,总的机会也增加了不少。
二、报考人数若能知道这个数据,就能知道自己的竞争对手到底有多少。然而,当年的报考人数一般看不到,只能看到前几年的数据。不过这些也足以判断出某个学院专业的竞争激烈程度。如果报考人数太多,推免的也不少,留给统考生的机会相对较少,那么该专业竞争很激烈。难度无疑大了很多。
三、录取人数
这里的录取人数指的是复试完最终的录取人数。这个与前一年公布的“招生人数”可能有些出入。特别是一些名校的热门专业,竞争激烈难度大,可能存在“大小年”现象。如果碰到生源特别好,那么也有可能扩招几个名额。所以,机会总是有的,关键是看考生的综合实力和表现。
四、报录比
真实的报考人数和录取人数作对比,就得出每年的招生报录比。这是一个很重要的数据,是衡量某个专业报考热度的核心指标。如果报录比一直居高不小,说明该专业持续很热。如果忽大忽小,这就说明存在大小年现象。以下是上交大电院近几年的报考人数、录取人数和报录比,同学们感受下。
上述表格数据是上交大电院2013年和2012年的报考录取数据(2014年尚未公布)。总的说来,上交大电院学硕比专硕的报录比高出不少,其中电子信息科学与技术和计算机科学与技术及仪器仪表工程(专硕)这三个专业呈上涨趋势。这就意味着竞争更加激烈。
其他专业变化幅度很小,只有计算机技术(专硕)专业是个例外。2013年最终录取35人,报考只有29人,多出6人。这6名考生从哪里来?笔者猜测,很有可能是在复试过程中从报考计算机科学与技术(学硕)专业的考生中调剂过来的。所以只要成绩足够优秀,就有机会。
五、推免人数
上交大电院在近几年招生目录中只说明推免总人数,具体到各个专业有多少人不得而知。其官网也没有公示推免生名单。不过笔者在上交大船建学院发现了该院2014年的推免生名单。下面就分专业整理一下。
对比船建学院2014年招生人数:总共211人,其中学术型131人,专硕80人。即可得知统考生一共111人,其中学术型69人,专硕42人。如果有更多的数据就可进一步得知具体每个专业统考生有多少。这样就能深入了解上交大具体某个专业的报考情况。
推免生数据一般会在每年10月正式报名的时候公布。所以,建议考生在报名时最好核查一下所报院校专业的推免情况。如果某个专业推免人数太多或者全部是,那就要慎重选择或者重新报考。否则,可能面临严峻挑战,甚至从这个时候就已经没有被录取的机会。
六、复试分数线
复试线的重要性在这里不用多说了。大部分招生单位都会公布这些数据,或者在研究生院,也有的在各自院系以通知的形式发布。上交大属于34所自划线高校,每年一般会在3月初就公布各个院系专业的复试线。
在这里要强调一点,过了复试线只是意味着有机会参加复试,并不一定能被录取。所以这里面还有一个最低录取线。这条线肯定比复试线稍高一些。因此,考试点考研专家提醒同学们一定要清楚,考研复习要多下功夫,初试一定要考过复试线。如此,才有可能取得最终的成功。仅仅过了复试线还是比较危险。成绩是王道,加油吧!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09