京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据为旅游管理部门解惑 看大数据如何指导旅游出行
当那场“说走就走的”旅程结束归来,你也许总在想:早知道结果是这个样子的,当初我肯定会……当你还在发出这样的感慨时,旅游景区的管理部门就不是感慨,而是头疼了!景区因为人流密集度过高而发生事故的情况屡有发生。今年年初,国家旅游局下发《景区最大承载量核定导则》,要求各大景区核算出游客最大承载量,并制定相关游客流量控制预案,4月1日起实施,因此旅游行业必须对景区的游客数量进行实时监控,但如何监控游客数量成为摆在景区管理者面前的现实问题。目前来看大数据的应用或许能为管理者的决策提供理论依据。
手机”大数据”为旅游行业解渴
手机早已经是我们日常生活中最重要的数码产品之一。了解手机通讯原理的人就会知道,手机之所以能够随时随地为用户提供服务,是因为它随时和通讯基站保持着密切的沟通。基于众多手机位置信息而形成的大数据可以显示有相同属性的人群日常活动的情况。这些数据对于一般人来说可能毫无价值,但是对于特定行业和用户,这些数据就是他们渴望了解的宝贵信息,而旅游行业就是这些数据的刚需用户之一。
五一和十一是具有中国特色的两个小长假,尤其是景区的热度要远远超过春节,但是各个景区的接待能力终究有限,经常会出现景区超负荷接待的情况。如果能够提前了解到游客的出行信息,掌握游客从哪里来?游客怎么来?游客去哪玩?游客怎么玩?这些信息就可以为旅游主管部门和旅游相关从业者的行业决策和运营规划提供第一手资料,但是通过一些传统的技术手段这些数据很难精确得到,或者换句话说,旅游管理部门想要提前得到这些数据更是天方夜谭。所以旅游行业对这类数据的“饥渴”程度可想而知。
运营商手中的大数据
随着手机,尤其是智能手机的普及,通过手机数据来分析手机用户的移动信息,从而形成大数据是一种切实可行的办法。我们以中国联通为例,目前中国联通为近3亿手机用户提供服务,同时也实时积累了庞大的用户数据信息。联通宽带公司负责联通大数据的具体运营,掌握、整理、积累和分析着这些海量数据,如果在保证客户信息安全的前提下,在关键的应用上对这些手机数据加以分析,它将体现出巨大的价值。目前联通宽带公司和各省旅游局在大数据方面已经展开深度合作,最终的目的就是要通过手机大数据帮助旅游部门解决四个方面的问题:游客从哪里来?游客怎么来?游客去哪里玩?游客怎么玩?
手机大数据的优势与未来
未来,手机大数据影响的绝对不仅仅是旅游行业,与之相关的行业应用不胜枚举。交通行业,通过大数据信息,大家会清楚各条道路是否正常运行,甚至是那些监控信息难以及时收集和反馈的高速路段;统计行业,更是大数据信息充分应用的领域,商业客户可以迅速了解目标商业区周边的人群的基本情况,为决策提供有力支撑。大数据在越来越多的行业和领域体现出的巨大价值,大数据对于企业和政府部门的运营决策的影响会越来越深入。
大数据已经不再是用户脑海中的一个概念,它已经开始实实在在地影响和帮助我们的生活,而和大数据相关的各个行业也已经为此全力以赴地做好了各自的准备,各种和大数据相关的应用也会以更多的形式呈现在我们的面前,未来将会是一个民生数据的时代。
人从哪里来?
通过对游客手机号码归属地的调查,获取游客的来源信息(省内、省外、国外),列出来本旅游地游客的归属地。
数据应用转化:可以精准性地对排名靠前地区进行前期出行宣传和指导。
人怎么来?
通过对到访游客行动轨迹的追踪,包括对经过交通枢纽的记录(汽车站、火车站和机场)、游客移动速度等公式计算,还原用户到达方式:公路、铁路还是航空。
数据应用转化:掌握用户出行方式,在到达处配置相应的接待力量,有效地疏导和安置游客。
人去哪玩?
通过对实时人流量的统计,得出每日人流趋势图,并给出游客到达峰值时刻统计,从而便于健全景区安全预警机制,这点对于落实国家旅游局下发《景区最大承载量核定导则》具有直接的指导意义,景区可以对游客数量进行实时监控。
数据应用转化:将人流和景区接待能力匹配,做到提前预警,可以一对一地对手机用户传递各景点实时人流信息,对旅游区的各个景点进行合理配置,方便用户选择景点。
人怎么玩?
通过对到达旅客的持续追踪,统计出游客在单一景区游玩时长,并根据游客的游玩作息时间、热点活动区域来分析、归纳游客的旅游轨迹。
数据应用转化:根据不同时段景区人流变化情况,实时提供配套的餐饮、住宿和娱乐一条龙服务。
这四方面的数据对于旅游主管部门和旅游从业者非常重要,有了这些数据,旅游管理者可以为游客制定出更加个性化的旅游套餐,提供配套的餐饮、住宿和娱乐一条龙服务。更重要的是旅游主管部门可以将协调好的信息回传到用户的手机上,和游客形成互动,提升游客对旅游过程的整体满意度,更加重要的一点在于,景区可以实时监控每个景区的游客数量,并对将要到来的游客数量做到心中有数,随时对客流和景区接待能力进行匹配。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23