
每家公司都是大数据公司_数据分析师
每天,企业都会收集与消费者和行业相关的数据,这些数据在企业运营中发挥着巨大作用。近日,麻省理工大学举办了一场有关大数据的CIO沙龙座谈会(MIT Sloan CIO Symposium),让人深刻理解到了一个事实,即每家公司都是一个大数据公司,区别在于有些公司发现了这一点,有些没有。
如果你的公司具有一定云计算技术基础,那么相对于那些正在转型到云服务上的公司而言,可能会更具备一定的优势。因为你会对如何利用云技术有着更准确的理解,而过渡阶段的公司可能还无法掌握相关技术。实际上,那些利用数据来为发展服务的公司,也利用了相同的理念。
参加本次座谈会的,有来自NuoDB公司的创始人Barry Morris,他反复引用一个实例,那就是电动汽车制造商特斯拉。一直以来,特斯拉都在利用数据帮助企业制定商业决策,实际上,特斯拉利用数据的过程并非刻意为之,而是顺其自然的结果。
正如Morris解释的那样,特斯拉并没有设置一个专门的数据分析部门,也没有特意去研究如何利用数据获得竞争优势。但事实上,他们一直在分析交付到消费者手上的电动汽车数据,这些数据会告诉公司,什么时候刹车片可能会磨损殆尽,人们开多远道路需要充一次电,在什么地方建立下一个充电站是最合乎逻辑的。特斯拉监测数据,收集数据,虽然他们卖的不是数据,但是数据已经成为他们业务里面最重要的组成部分之一。
数据算得上是一种“企业神器”,这得到了TriNet公司首席执行官Burton M. Goldfield的认同。TriNet专为小企业提供服务,帮助他们处理与人力资源相关的监管和法律问题。
Goldfield指出,NriNet服务的企业大约有9000家,服务的员工数量超过24万人,他们为这些企业处理员工工资、福利以及其他服务,关注小企业健康发展。每个月,NriNet都会出具一份小企业就业市场数据报告,虽然这份报告是免费的,但完全能够显示出NriNet的专业性。Goldfield表示,因为他的公司非常了解小企业,所以可以出具这种报告,而且NriNet并不在乎做这份报告是否能够赚钱。
正是出于对数据重要性的深刻理解,NriNet在2008年时发现,风投资本可能会出现问题,之后的金融危机也印证了NirNet的预测。
就在本周,亚马逊也发布了一份报告,评出全美范围内最“博学”的20个城市。据报道,亚马逊分析了从2013年4月到2014年4月所有来自印刷媒体和Kindle里书籍、杂志、报纸的销售数据,所有这些数据的取样城市的居民数都超过了10万。和TriNet一样,亚马逊也是“简单地”制作了一份报告,然后从收集到的数据中挖掘竞争优势。
Equinix是一家提供数据中心服务的公司,Brian Lillie是这家公司的首席信息官,她表示Equinix已经将数据作为自己业务的一部分,因为数据非常有意义,不仅可以衡量数据中心当前的状况,还能帮助公司找到高效运营数据中心的方法。“我们利用数据分析,预测可能发生的问题,”Lillie表示,例如,哪一部分会出现故障?如何降低冷却成本?这些业务层面的问题都需要数据提供答案,在商言商,公司越早了解到这些数据,就能赚到更多的钱。可以肯定的是,Equinix已经看到了数据的价值,并且也正在探索如何更好地使用数据。
有一件事非常明确,那就是每家公司都在收集数据、使用数据,不论是用于内容营销,还是用于提升业务,或者根据收集到的数据拓展新的业务。不管是以什么样的形式,企业都在利用数据了解自己的客户,支持自己的商业决策,让自己成为一家更智慧的公司。
只要有人付诸于行动,就会发现数据其实并不复杂,公司只需要对自己所做的事情有所了解,然后从自己的业务中尽可能地收集信息。如果能做到这一点,那么已经算得上是一家大数据公司了,因为实际上每家公司都是大数据公司,只是有人发现了这一点,有人还没有。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01