
透过“大数据”这只“奇异之眼”_数据分析师培训
透过“大数据”这只“奇异之眼”
《爆发——大数据时代预见未来的新思维》的作者艾伯特-拉斯洛·巴拉巴西是复杂网络研究的权威。
对教育来说,原本隐秘、复杂、变化的学情和教情,尤其是不同年龄段学生心智、兴趣、动机的变化,一直困惑着众人。而巴拉巴西教授告诉我们,在以“云计算”为标志的第三次信息化浪潮下,通过对课堂、作业、社交(QQ、微博、微信等)、生活等大数据的深度挖掘,几乎可以预判出学生“93%的行为”。各类数据的叠加和补充,足以对不同的行为模式、心理特点、思想状态进行精确模拟,进而直接跳过心理学和教育学的艰涩理论,给教育者提供可视化、可量化、可监控的教育决策。当我们把教育作为严谨的科学看待时,“它是有规律、可预测的”,巴拉巴西如是说。(邱磊)
维克托·迈尔-舍恩伯格的《大数据时代》告诉我们:如同蒸汽机、电气化、信息化这些推动人类文明大步前进的发明创造一样,大数据也代表着一个崭新的、蓬勃的、孕育着无限可能时代的来临。它的影响以及改变已经确实发生在健康应用、旅游应用、购物应用等领域,美国提出大数据的战略地位堪比工业时代的石油,欧盟认为大数据是促进经济增长的重要力量,中国电子商务教主马云一再认为“阿里最值钱的是数据”。我们已经别无选择地处于这样一个时代,《大数据时代》恰恰就是为这样一个时代完美阐释以及前瞻准备的书籍。它在概念上先期明确了数据处理的三大改变:数据不要抽样要全体,做事需要的是效率而不是精确,要相关性不要因果。(季勇)
阿兰·柯林斯与理查德·哈尔费森的《技术时代重新思考教育:数字革命与美国的学校教育》一书,从教育发展史视角,分析了传统学校教育的弊端以及技术发展对未来教育的挑战。作者从技术可能会使教育失去什么、带来什么以及我们如何降低技术可能给教育带来的风险等方面引发读者思考,面对大数据技术我们当如何思考教育,重新定位教育、领导和发挥教育的作用。值得关注的是,作者提醒我们“显而易见的是,技术已经恶化了教育中的公平问题,我们需要谨慎思考如何缓解这个问题”。这样的问题,在我们的教育现代化进程中同样存在,如何从别人的经验教训中获取我们需要的东西,少走一些弯路,这本书值得我们一读。(李达)
有人说,凯文·凯利的《失控:机器、社会与经济的新生物学》“可能是90年代最重要的一本书”,有些言过其实,但当我们读过以后还是感觉脑洞大开。大数据时代,在“众包”、“群蜂思维”下我们必须“学会向我们的创造物低头”,“当人造与天生最终完全统一的时候,那些有我们制造出来的东西将会具备学习、适应、自我治愈,甚至是进化的能力”。在大数据时代,谁也不可能成为知识的垄断者,人人可以发声,人人都有可能成为专家,作为教师,我们应该思考一下我们的角色和功能变换了。(朱建)
维克托·迈尔-舍恩伯格教授在《与大数据同行:学习和教育的未来》中指出:当下大数据正悄悄影响到教育体系的每个层面,对于全世界的学习与教育活动,都会产生极为深远的影响。毫无疑问,这本书帮助我们一线教育工作者叩响大数据之门。“大数据”这只“奇异之眼”,似乎能够看到每个学习个体的学习过程,记录他们的微观表现,发现他们的学习之趣,破解他们的学习之难,从而让教育实现“私人定制”,让学生“心花怒放”。然而,迎面而来的问题是:基于“大数据”背景下的教师,如何掌握新技术、把握先机?或许,您能在《与大数据同行》中寻到答案。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02