
上交所用大数据“捕鼠”:打击违法违规行为
上交所监事长潘学先:将充分利用大数据挖掘技术,严厉打击证券交易违法违规行为,特别是上市公司“伪市值管理”等新型违法违规行为
全国人大代表、上交所监事长潘学先昨日在新华网接受在线访谈时表示,上交所将充分利用大数据挖掘技术,{CDA数据分析师培训}实现由“人工判断型”监管向“技术导向型”监管转变,严厉打击证券交易违法违规行为,特别是借各种题材炒作、操纵股价的行为,以及上市公司“伪市值管理”等新型违法违规行为。
具体而言,未来上交所在一线监管方面将着重开展加强交易行为监控、完善交易异常情况风险防控机制、完善沪港通跨境监管协作、深化跨产品跨市场监管合作、推进透明度建设、提升一线监管科技化水平、做好委托执法等几方面工作。
潘学先介绍,2013年上交所利用大数据“捕鼠”模型发现了一起“老鼠仓”案件——原博时基金的基金经理利用未公开信息非法获利案,拉开了打击老鼠仓行为的序幕。在系列“捕鼠”行动中,上交所坚持对所有的基金公司和基金经理进行全扫描,做到不枉不纵,发现一起,上报一起,绝不姑息。
迄今为止,上交所共上报基金“老鼠仓”案件线索20余件,涉案金额上百亿元。
去年上交所共向证监会上报各类案件线索133份,其中涉嫌内幕交易线索88份,涉嫌市场操纵线索38份,涉嫌“老鼠仓”线索3份,涉嫌超比例持股未披露线索2份,其他类线索2份。
潘学先表示,下一步,上交所将继续充分利用大数据挖掘技术,开发利用各类违法交易模型,筛查锁定有价值线索,实现由“人工判断型”监管向“技术导向型”监管转变,从而提高监管效能。
未来上交所在一线监管方面主要做好以下几方面的工作:
第一,落实中央和证监会简政放权、监管转型的各项部署,进一步提升上交所一线监管工作的主动性,加强证券交易行为的监控,严厉打击证券交易违法违规行为,特别是借各种题材炒作、操纵股价的行为,以及上市公司“伪市值管理”等新型违法违规行为。
第二,进一步完善市场交易异常情况风险防控机制,特别是加强对新业务、新机制(如程序化交易)市场风险的监测和防控,进一步研究完善市场风险应对处置机制,全面落实证监会应对市场重大交易异常情况的工作部署。
第三,进一步完善沪港通跨境监管协作机制,加强与港交所的监管合作,共同打击跨境证券违法违规行为,防止监管套利,确保沪港通业务平稳运行,共同维护境内外投资者的合法权益。
第四,深化跨产品、跨市场监管合作,密切跟踪股票现货与股票期权的相互影响,打击跨现货期权的炒作和操纵等违法违规行为,强化证券现货与股指期货交易的联动监管。
第五,进一步推进上交所一线监管工作的公开、透明,主动回应市场热点、疑点问题。
第六,进一步提升上交所一线监管工作的科技化水平,优化沪港通、股票期权等新产品、新业务的监察功能,完善市场大数据分析功能,为上交所履行一线监管职能提供更有力的技术保证。
第七,做好委托执法工作。
针对近期市场浮现涉嫌利用高送转操作股价、利益输送等情况,潘学先表示,上交所主要从及时督导上市公司提高披露分红送转信息的针对性和有效性,以及加强对公司高送转信息披露和股价异动情况的事后监管、加大快速反应力度等两个角度采取监管措施。
他透露,上交所还将会同有关部门,对此类案例加强信息披露监管与二级市场监察的联动,加大对内幕交易、股价操纵等违法违规行为的打击力度。一旦发现问题就与相关部门联动,对违规违法的行为加强打击,维护市场“三公”。
就市场关心的上市公司退市制度实施问题,潘学先谈到,上交所始终认为退市制度改革应当坚持“市场化、法制化、常态化”的发展方向,这既有利于进一步发挥市场机制的作用,也有利于进一步有效遏制和威慑重大违法行为。
他说,从今年看,公开信息披露情况显示,已有主动申请退市的公司出现,不久后预计也会有一些由于重大违法违规而出现强制退市的现象。
此外,潘学先还谈到,针对政府工作报告中提出的资本市场改革发展工作,上交所将落实四方面举措:重点落实新股发行注册制改革;探索建立多层次资本市场,在上交所现有蓝筹股市场的基础上,今后还会探索新兴产业板;逐步完善上市公司退市机制;吸引长期资金多渠道入市。
此次全国两会,潘学先拟结合交易所工作提出三个方面建议。一是建议完善交易场所长效监管机制,将《交易场所监督管理条例》列入国务院立法工作计划;二是建议有关部门统筹考虑,进一步提高香港人民币合格境外机构投资者额度;三是优化上市公司并购重组税收制度,充分发挥税收的激励作用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03