
运用大数据 更加接地气_大数据培训
与以往不同的是,今年的政府工作报告无论是在框架架构还是篇幅大小上都令人耳目一新。此次报告中频频闪现的“任性”“互联网+”等“网络热词”,更是拉近了与普通民众之间的距离。
那么,这份崭新的政府工作报告背后究竟凝聚着哪些不为人知的“秘密”?5日下午,政府工作报告起草组负责人、国务院研究室主任宁吉喆在国务院新闻办举行专场发布会,为中外记者答疑解惑。
总理亲自定稿
记者:今天总理所作的报告,无论是架构布局还是篇幅大小都跟以往明显不同。总理本人是不是很重视这份报告的质量?
宁吉喆:政府工作报告的起草工作从去年八九月份就开始了。李克强总理亲自领导政府工作报告的起草工作,先后主持国务院常务会议、国务院全体会议,听取汇报。习近平总书记也高度重视这项工作,他先后两次主持中央政治局会议、中央政治局常委会会议,听取有关情况汇报,并研究通过。
报告的起草经过了反复研究、反复分析、反复修改,共修改了四五十稿。李克强总理亲自主持修改,最后亲自定稿。我们尽量减少篇幅—很多不必要的虚词都省了。
报告吸收上千条民意
记者:今年的报告在起草、撰写过程中有哪些新变化?
宁吉喆:为了确保报告的质量和“成色”,起草组广纳各方观点和诉求。在整个起草及修改、定稿过程中,各地方、各部门和各单位都参与了进来。
如果说高层领导的重视和起草团队的精良为报告质量提供了大保障,那么,来自社会各界的民意则是这份报告“干货”十足的重要源泉。
为了广泛征求社会各方面的意见,李克强总理曾亲自主持召开了三次座谈会,广纳专家学者和企业负责人,科教文卫体界人士和基层群众,以及民主党派、工商联、无党派人士开展座谈会;此外,在全国范围内广泛征求地方部门和单位的意见,征求意见稿发出去将近4000份,各方面提出的意见上千条,这些经过整理都吸收到报告中。
运用云计算等现代方法
记者:大家都给这个报告点赞,觉得它非常接地气。在报告的起草过程中,你们是不是特别用心地做了相关工作?
宁吉喆:确实。这次的报告不仅分量沉甸甸,而且特别注重亲民和接地气。事实上,为了创新报告的起草方式,起草组运用智库、专家库提供支撑,运用互联网、大数据、云计算等现代方法和手段,找内容、找数据、找词语。
中国政府网还联合了数家网络,发起了“2015政府工作报告我来写—我为政府工作献一策”的活动,及时把意见和建议转给起草组。据不完全统计,在全社会收集的意见和建议(包括海外)共有4万多条,筛选整理出来的1000多条都转给了我们,其中直接收集的有数十条以上。
国家外国专家局还联合召开了政府工作报告征求外国专家意见的座谈会,来自比利时、德国、日本、新加坡、英国、美国六个国家的十几位专家提出了非常好的意见。此外,起草组召开全国人大代表的座谈会,事先听取代表的意见。我们还邀请了在京学习、培训的各地方党政负责同志,听取地市、县委一级同志的意见。
经济发展讲得更透彻
记者:您能否就此为我们扼要地解读一下政府工作报告?
宁吉喆:与往年相比,今年政府工作报告的特点比较突出。
结构框架和形式与去年相比有明显不同。去年的政府工作报告有三个部分,第一部分是2013年的工作总结回顾,第二部分是2014年工作总体部署,第三部分是重点任务。今年的政府工作报告有六大部分,前两部分是一样的,而后面的重点任务部分专门把改革开放、经济发展、民生改善和社会建设、政府自身建设作为四个部分独立出来。
如果是在去年政府工作报告的结构下,很难把这些内容摆到同一个层次去讲,只能简化了。
总而言之,政府工作报告形式上的不同反映了内容上的充实和创新,这种形式和内容的创新,都体现了“四个全面”,也就是这次政府工作报告开始就提出的全面深化改革、全面推进依法治国、全面从严治党、全面建成小康社会。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01