京公网安备 11010802034615号
经营许可证编号:京B2-20210330
运用大数据 更加接地气_大数据培训
与以往不同的是,今年的政府工作报告无论是在框架架构还是篇幅大小上都令人耳目一新。此次报告中频频闪现的“任性”“互联网+”等“网络热词”,更是拉近了与普通民众之间的距离。
那么,这份崭新的政府工作报告背后究竟凝聚着哪些不为人知的“秘密”?5日下午,政府工作报告起草组负责人、国务院研究室主任宁吉喆在国务院新闻办举行专场发布会,为中外记者答疑解惑。
总理亲自定稿
记者:今天总理所作的报告,无论是架构布局还是篇幅大小都跟以往明显不同。总理本人是不是很重视这份报告的质量?
宁吉喆:政府工作报告的起草工作从去年八九月份就开始了。李克强总理亲自领导政府工作报告的起草工作,先后主持国务院常务会议、国务院全体会议,听取汇报。习近平总书记也高度重视这项工作,他先后两次主持中央政治局会议、中央政治局常委会会议,听取有关情况汇报,并研究通过。
报告的起草经过了反复研究、反复分析、反复修改,共修改了四五十稿。李克强总理亲自主持修改,最后亲自定稿。我们尽量减少篇幅—很多不必要的虚词都省了。
报告吸收上千条民意
记者:今年的报告在起草、撰写过程中有哪些新变化?
宁吉喆:为了确保报告的质量和“成色”,起草组广纳各方观点和诉求。在整个起草及修改、定稿过程中,各地方、各部门和各单位都参与了进来。
如果说高层领导的重视和起草团队的精良为报告质量提供了大保障,那么,来自社会各界的民意则是这份报告“干货”十足的重要源泉。
为了广泛征求社会各方面的意见,李克强总理曾亲自主持召开了三次座谈会,广纳专家学者和企业负责人,科教文卫体界人士和基层群众,以及民主党派、工商联、无党派人士开展座谈会;此外,在全国范围内广泛征求地方部门和单位的意见,征求意见稿发出去将近4000份,各方面提出的意见上千条,这些经过整理都吸收到报告中。
运用云计算等现代方法
记者:大家都给这个报告点赞,觉得它非常接地气。在报告的起草过程中,你们是不是特别用心地做了相关工作?
宁吉喆:确实。这次的报告不仅分量沉甸甸,而且特别注重亲民和接地气。事实上,为了创新报告的起草方式,起草组运用智库、专家库提供支撑,运用互联网、大数据、云计算等现代方法和手段,找内容、找数据、找词语。
中国政府网还联合了数家网络,发起了“2015政府工作报告我来写—我为政府工作献一策”的活动,及时把意见和建议转给起草组。据不完全统计,在全社会收集的意见和建议(包括海外)共有4万多条,筛选整理出来的1000多条都转给了我们,其中直接收集的有数十条以上。
国家外国专家局还联合召开了政府工作报告征求外国专家意见的座谈会,来自比利时、德国、日本、新加坡、英国、美国六个国家的十几位专家提出了非常好的意见。此外,起草组召开全国人大代表的座谈会,事先听取代表的意见。我们还邀请了在京学习、培训的各地方党政负责同志,听取地市、县委一级同志的意见。
经济发展讲得更透彻
记者:您能否就此为我们扼要地解读一下政府工作报告?
宁吉喆:与往年相比,今年政府工作报告的特点比较突出。
结构框架和形式与去年相比有明显不同。去年的政府工作报告有三个部分,第一部分是2013年的工作总结回顾,第二部分是2014年工作总体部署,第三部分是重点任务。今年的政府工作报告有六大部分,前两部分是一样的,而后面的重点任务部分专门把改革开放、经济发展、民生改善和社会建设、政府自身建设作为四个部分独立出来。
如果是在去年政府工作报告的结构下,很难把这些内容摆到同一个层次去讲,只能简化了。
总而言之,政府工作报告形式上的不同反映了内容上的充实和创新,这种形式和内容的创新,都体现了“四个全面”,也就是这次政府工作报告开始就提出的全面深化改革、全面推进依法治国、全面从严治党、全面建成小康社会。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28