
大数据营销 要注意规避三大陷阱_数据分析师
应用大数据进行精准营销,要注意规避如下三大陷阱:
1,有数不一定有据;
2,大而不全;
3,内生变量模糊了因果关系。
无论基于大数据的精准营销最后谁是赢家,笑到最后的应该是消费者,特别是新一代以网络为家的消费者。
大数据营销应用的现状可用这样几个“多”来形容:说的比投入的多;投的比做的多,如有些大型国企投入资金,建部门、雇海归,但并没有真正做什么;做的比懂的多,收集了一些数据,但读不出有价值的信息来;懂的比赚的多;认为今后赚的比现在想到的多。
如何才能实现光明的前景?一要养成大数据思维,二要避开三大陷阱。
大数据思维
大数据思维有如下四个维度。
定量思维:一切皆可测。POS机、网上购物、社交媒体以及各种各样的卡,都是大数据的来源。例如,通过传感器,利用红外线微波可以观测人的生理状态、脑电波等,如果驾车人员犯困,其心理指标发生变化并到一个临界值,汽车后台就会告诫驾驶员休息。赌场入口处的红外传感器,会根据脑部热量情况,分析进来的是冲动型赌徒还是冷静的赌徒。
汽车行业的大数据有人、车、环境三个来源。“人”不仅包括车主或者驾驶人员,还应包括乘客;“环境”不光是路面信息,还包括行车所到之处的周边信息,如旅馆、加油站、旅游景点等等,典型如地图应用。“车”的应用也已有案例,如美国一家保险公司为汽车加装了跟踪器,根据行驶数据来决定保险费率;米其林也会搜集与环境相关的数据,某智能芯片厂商为长途货运汽车提供的芯片,可以全球定位、调节物流和运输。
跨界思维:一切或可联。跨界有不同媒介、渠道间的跨界,如O2O和LBS,也有商业模式、数据应用的跨界。例如,GoPro是穿戴式照相机,但它也为寻求刺激的滑雪、跳伞运动爱好者,剪辑加工影像,并在电视上播出,吸引了广告和巨量的粉丝团队。
操作思维:一切要可行。应用大数据,不等于非得要上高大上的设备和硬件投入。例如视频公司根据用户观看视频的过程来决定推送什么广告,其算法可能比较简陋,但速度快。其次,要把数据和用户心理结合起来,营销精准但不要引起顾客的反感。第三,大数据管理要与KPI结合起来,协调各个部门的利益,否则大家对数据采集不积极甚至不合作。例如,运营部门如果看重节省运营成本,可能就对数据采集的意愿不强烈。
实验思维:一切应可试。比如,要想知道推荐的效果,可以做一个实验。一半消费者有推荐,一半没有。从短期看,推荐效果并不明显,但长期效果非常明显。因为推荐是购物体验的一部分。短时间内,消费者对所推荐的产品可能没需求,但到有需求时就会想起来,尤其是当推荐产品符合他们的品位和风格时。
三大陷阱
应用大数据进行精准营销,要注意规避如下三大陷阱。
有数不一定有据。应用大数据需要什么样的统计或逻辑背景?首先,描述。要能辨识出我们描述的人跟心里想的目标人群是不是一群人。其次,预测。理解现象、变量之间的相关性。第三,优化。理解因果关系,否则无法优化。简言之,预测需要相关性,而优化则需要因果性,而描述关键在样本的代表性。
大而不全。有些大数据应用收集的数据非常多,但对其倾向性却不清楚。解决的办法是跨界,收集企业之外的数据。例如,汽车制造商要跟电商结合,要跟社交媒体结合,通过跨界把数据做全,才能把精准营销做得更好。其次,要把营销、销售和库存等内部信息打通。
内生变量模糊了因果关系。大数据介入消费者购买过程越多,可能对消费者真实偏好的了解越少。例如,视频网站给某用户推荐了一个同性恋电影,他看了;再推荐一部,他又看了。这时,推荐系统就会认定该用户是同性恋,从而继续推荐,实际上该用户可能不过是一时好奇,最后深受其害。解决办法是定期实验。
基于大数据的精准营销到底谁会胜出?在我看来,要至少具备以下资源优势的一种:产品有优势、对客户特别了解、数据来源特别多、平台优势。目前,电商的优势显而易见,因为其数据量非常大,而且有平台优势。
制造商的机会在哪里?一要把产品做得非常好,二要联网提供服务,就像特斯拉,买车,更是买背后的互联网服务。然而,无论谁是赢家,笑到最后的应该是消费者,特别是新一代以网络为家的消费者。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10