
那些已经采集来的信息,除常规用途之外,还能起点什么作用
云计算""="" width="" 592""="" height="" 415""="">
一个团队有机会去自主的选择一个项目,通常是一件不错的事儿,如果你有这样的机会,我建议首先考虑做数据集成类型的项目,这在未来的企业中也许就是“明日之星”!
想想我们生活的大自然,最可怕的是什么?我想很多人会联想到荒凉,想到漫无边际的沙漠、茫茫大海上的孤岛。想想我们身处的社会,最可怕的场景是什么?很多人会联想到冷漠,想到人与人之间的尔虞我诈、冷眼相对。尽管我们对此感觉不适,但我们却能接受企业信息环境中存在多个系统,它们彼此孤立,互不来往,就恰恰像极了海上的孤岛,彼此独立的存在,可惜的是:它们原本可以连在一起成为一个乐园。如果说我们无法改变海岛的位置、无力挽回热心丢失的人群关系,我们何不放手试一试让企业信息孤岛消失在下一秒呢?至少这是我们能做的!
可能面对这样一个宽泛的建议,你会感觉到无从下手,让我们从几个简单的例子开始:
1、 如果企业已经有考勤系统,你有没有想过打卡记录除了考勤,还能干什么?
2、 如果企业已经有CRM(客户关系管理系统),你有没有想过客户信息除了便于查询,还能干什么?
3、 如果企业已经有详细的销售记录,你有没有想过这些信息除了备查,还能干什么?
4、 如果企业已经有库存管理(包含出库和入库),你有没有想过这些信息除了管理仓库,还能干什么?
5、 如果企业已经有了xxxx,还能干什么?
这些问题简单而直接,就是在提醒你,那些已经采集来的信息,除了他们原本的常规用途之外,还能起点什么作用?就拿考勤的例子来说,有时我们甚至是开玩笑的说:如果考勤记录开放,那就能知道一个人有没有来上班?第一反应可能是这个太无聊了!但是根据我多年的经验:越是无聊的东西,可能越有价值,这是个信息泛滥的时代,有的企业连用户手机上的gps定位信息都给收刮了去,一开始肯定是无聊的很,但实践证明gps定位信息引爆了移动互联网,因为互联网只能知道你有没有上网,移动互联还能知道你在哪里上网,这尤其重要。
好了,让我们回到考勤的问题。一个人有没有来上班被打卡时间点确定了!那么我们可以把它做成标准的web服务,等待其他的应用在需要时调取。什么应用会使用这样一个服务呢?试想一下,某个流程软件,需要流转一项及时性非常高的任务,有甲乙丙等等的几个人可以流转,请注意,这时某人是否已经来上班就非常的重要了,不知你看明白没有?
再说一个,比如客户信息。如果企业有呼叫中心,那么客户信息的web服务就会被呼叫中心的来电识别所亲睐!而呼叫中心的信息反馈也可以直达CRM。
比如销售记录。如果企业有运筹部门,他们可能就可以利用销售记录的web服务参考着制定产能计划。销售信息还能够直接反应不同类型的产品谁更畅销,帮助企业决策系统和决策者制定战略方向!
比如库存信息。如果企业在乎风险的话,那么企业的库存是要建立风险模型的,要防止大量的积压。库存信息对于物流的意义同样重大,你甚至可以参考出入库信息,综合的安排物流车辆,一车装的更多,你就省的更多!库存信息甚至可以提供给在线交易平台,你的客户可以看到你的商品什么时间发货,就像快递信息一样给你的客户一份透明的物流“账单”!
还有很多很多。说到这里,我们不难发现,这些道理相当的简单,也相当的容易操作,最可贵的是,它们相当的没有失败成本!怎么理解失败成本呢?比如你的及时性任务调用了某人是否上班的服务,由于某些原因,后来不想调用了,那么撤掉就是了!你会惊奇的发现:好像没什么大事,好像没损失什么,哪天他们又想调用了,来就是了,你会惊奇的发现:好像没什么大事,好像没增加什么负担!千万不要以为这个很正常,是数据的包容性决定了这一点,也就是“环境+数据=结论”是基本模式,它们能自由的退化为“环境=结论”,也可以升级为“环境+数据+数据2=结论”!就像多多益善,但是咸菜萝卜干也能对付着过日子!这是数据的世界最美妙的东西,谁做谁知道!
故事本该结束了,但是依照惯例,我点一点数据的思想!有人可能会问:既然这么有用,那么考勤系统集成这个功能、crm集成这个功能。。。它们各自集成功能不就行了么?用不着你插这一手啊!让我们把思想的束缚拿掉,自由的飞一会儿。然后你回答我这个问题:请问如果我集成了这些功能,它们在我这里的使用记录,是什么?
哈哈!是数据!于是,你发现:宇宙之外是宇宙!手法越高明,部署越密集,眼界就会越高远,我们站在数据之上,走过的脚印也是数据本身,你能明白我想说什么?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29