
数据中心行业同样需要互联网思维
如今互联网已经渗透到社会的各行各业中,人们的工作和生活无时无刻不在受着互联网的影响,任何一个传统行业都将生意做到了互联网上,数据中心行业也不例外。其实数据中心是与互联网关联最为紧密的行业,也是互联网发展的基石,没有数据中心的发展也就没有互联网如今的繁荣。数据中心作为互联网发展的基础设施,也在影响着互联网。网上流传着一个段子很有趣,因受互联网思维的影响,很多行业和职业都披上了互联网的外衣:以前化缘的改叫众筹了,算命的改叫分析师了,八卦小报改叫自媒体了,统计改叫大数据分析了,忽悠改叫互联网思维了,做耳机的改为可穿戴设备了,数据中心的都自称“云计算”了,办公室出租改叫孵化器了,圈地盖楼改叫科技园区了,借钱给朋友改叫天使投资了,放高利贷都改叫资本运作了。短短几年互联网冲击了几乎所有的行业,改变了整个社会的工作与生活方式,让本来很普通的业务都变成了高大上,穿上了互联网思维的外衣。
我们已经清楚了什么是互联网,也感受到了互联网给我们带来的变化,但是似乎还不是十分清楚到底什么是互联网思维。互联网思维可以用四个词语来高度概括,就是免费、速度、用户、质变。很多的互联网公司都是建立在“主营业务免费”的基础上,比如360的免费杀毒,百度的免费搜索,腾讯的免费聊天工具,通过这些业务留住用户,然后通过广告、游戏等其它方式受益;互联网技术门槛低,因此扩张速度就是生命,业绩每年翻番在这个行业里再正常不过了,在几年前团购的企业还有数千家,现在却仅剩下数十家,可见这个行业更替变化的速度了;互联网是最注重用户体验的行业,虽然互联网企业不是从用户身上直接赚钱,而用户对企业的关注和评论却能决定生死,所以互联网企业整天都在挖空心思在拉拢用户,监控网站的访问流量,流量就是互联网企业的生命线;互联网思维最强大之处在于可能由量变产生质变,这就是用免费或者成本价格销售产品带来用户规模之后的一种新的可能性,阿里巴巴成立前十年一直在寻找扭亏的商业模式,因为搭建的商业平台是开放给大家,并赚不到钱,后来随着用户量的积累,可以做一些广告,推出了支付宝,天猫等等,这些业务都是在阿里通过淘宝积累出大量用户和中小商家的基础上才开始赚钱的,正是淘宝用户数量达到了一定的规模后,才开始发生了质变,此后开始大赚特赚。
受互联网思维的影响,数据中心都开始叫“云数据中心”了,实际上很多数据中心在新增了几台服务器之后,做了一些虚拟化应用可能就开始说自己的是“云数据中心”,多半是赶时髦,觉得如今不和“云”沾上关系都不好意思说出口,冒充“云数据中心”的不在少数。其实现有的数据中心不做彻底的改变根本无法承载“云计算”,真正的“云数据中心”完全需要数据中心新建才能满足。当然也并不是所有的数据中心都需要“云计算”,具体要看是什么应用。不管数据中心是否真的需要“云”,但是却一定需要互联网思维。为什么这么说呢?我们来看看互联网思维对数据中心的影响。首先是免费,数据中心也可以免费?答案是肯定的,我们现在经常使用的云盘就是免费的,互联网企业将自己的数据中心免费给用户存信息,积累使用的用户。数据中心可以通过二次增值的服务来获益,比如向使用的用户推送广告,给用户系统做优化,给用户提供各种便利的收费业务等等。其次是速度,数据中心追求速度,这点正是互联网思维的重要特点,数据中心的访问速度越快往往能提升改善用户的体验,速度也体现在业务部署方面,若有新业务需要部署时,数据中心可以在短短几分钟内完成,这将大大减少维护费用的支出。再次是用户,数据中心需要的是海量用户的访问,只有达到规模效应,“云计算”才能发挥出技术优势来,数据中心也非常注重用户的体验,尽量满足每一个用户的需求,注重用户体验,提供可靠、安全的访问。最后是质变,任何事物都存在从量变到质变的过程,当数据中心发展到一定规模后,反而会产生巨大的回报。如今的“云计算”,“大数据”,“虚拟化”等各种新技术,都是基于海量数据和用户来实现的,也只有产生质变之后,这些技术才能发挥效能。比如如果一个数据机房只是一个办公大楼的办公网络,那也用不上这些,满足办公楼里人员上网的功能就可以了,一般都不需要多么复杂的数据中心技术,大量的部署“云计算”,“大数据”技术反而是画蛇添足了,所以数据中心需要质变,只有用户和业务积累到一定程度后,各种新的技术才有用武之地。
互联网思维强调开放、协作、分享,组织内部也同样如此,它讲究小而美,大而全,这些特征都是数据中心所需要的。数据中心应该更开放,而不是走向封闭,数据中心应该注重用户体验,而不是简单的关注大小,数据中心应该根据自己业务部署,而不应该盲目地建设得规模过大或多小,只有穿适合自己的鞋才是最舒服的。数据中心和互联网本来就是密不可分的,如今互联网思维影响着整个社会,也对数据中心产生了深远的影响。所有的数据中心新技术都包含有互联网思维在里面,具有了互联网思维的数据中心将是未来数据中心的主要特征。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27