京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据中心行业同样需要互联网思维
如今互联网已经渗透到社会的各行各业中,人们的工作和生活无时无刻不在受着互联网的影响,任何一个传统行业都将生意做到了互联网上,数据中心行业也不例外。其实数据中心是与互联网关联最为紧密的行业,也是互联网发展的基石,没有数据中心的发展也就没有互联网如今的繁荣。数据中心作为互联网发展的基础设施,也在影响着互联网。网上流传着一个段子很有趣,因受互联网思维的影响,很多行业和职业都披上了互联网的外衣:以前化缘的改叫众筹了,算命的改叫分析师了,八卦小报改叫自媒体了,统计改叫大数据分析了,忽悠改叫互联网思维了,做耳机的改为可穿戴设备了,数据中心的都自称“云计算”了,办公室出租改叫孵化器了,圈地盖楼改叫科技园区了,借钱给朋友改叫天使投资了,放高利贷都改叫资本运作了。短短几年互联网冲击了几乎所有的行业,改变了整个社会的工作与生活方式,让本来很普通的业务都变成了高大上,穿上了互联网思维的外衣。
我们已经清楚了什么是互联网,也感受到了互联网给我们带来的变化,但是似乎还不是十分清楚到底什么是互联网思维。互联网思维可以用四个词语来高度概括,就是免费、速度、用户、质变。很多的互联网公司都是建立在“主营业务免费”的基础上,比如360的免费杀毒,百度的免费搜索,腾讯的免费聊天工具,通过这些业务留住用户,然后通过广告、游戏等其它方式受益;互联网技术门槛低,因此扩张速度就是生命,业绩每年翻番在这个行业里再正常不过了,在几年前团购的企业还有数千家,现在却仅剩下数十家,可见这个行业更替变化的速度了;互联网是最注重用户体验的行业,虽然互联网企业不是从用户身上直接赚钱,而用户对企业的关注和评论却能决定生死,所以互联网企业整天都在挖空心思在拉拢用户,监控网站的访问流量,流量就是互联网企业的生命线;互联网思维最强大之处在于可能由量变产生质变,这就是用免费或者成本价格销售产品带来用户规模之后的一种新的可能性,阿里巴巴成立前十年一直在寻找扭亏的商业模式,因为搭建的商业平台是开放给大家,并赚不到钱,后来随着用户量的积累,可以做一些广告,推出了支付宝,天猫等等,这些业务都是在阿里通过淘宝积累出大量用户和中小商家的基础上才开始赚钱的,正是淘宝用户数量达到了一定的规模后,才开始发生了质变,此后开始大赚特赚。
受互联网思维的影响,数据中心都开始叫“云数据中心”了,实际上很多数据中心在新增了几台服务器之后,做了一些虚拟化应用可能就开始说自己的是“云数据中心”,多半是赶时髦,觉得如今不和“云”沾上关系都不好意思说出口,冒充“云数据中心”的不在少数。其实现有的数据中心不做彻底的改变根本无法承载“云计算”,真正的“云数据中心”完全需要数据中心新建才能满足。当然也并不是所有的数据中心都需要“云计算”,具体要看是什么应用。不管数据中心是否真的需要“云”,但是却一定需要互联网思维。为什么这么说呢?我们来看看互联网思维对数据中心的影响。首先是免费,数据中心也可以免费?答案是肯定的,我们现在经常使用的云盘就是免费的,互联网企业将自己的数据中心免费给用户存信息,积累使用的用户。数据中心可以通过二次增值的服务来获益,比如向使用的用户推送广告,给用户系统做优化,给用户提供各种便利的收费业务等等。其次是速度,数据中心追求速度,这点正是互联网思维的重要特点,数据中心的访问速度越快往往能提升改善用户的体验,速度也体现在业务部署方面,若有新业务需要部署时,数据中心可以在短短几分钟内完成,这将大大减少维护费用的支出。再次是用户,数据中心需要的是海量用户的访问,只有达到规模效应,“云计算”才能发挥出技术优势来,数据中心也非常注重用户的体验,尽量满足每一个用户的需求,注重用户体验,提供可靠、安全的访问。最后是质变,任何事物都存在从量变到质变的过程,当数据中心发展到一定规模后,反而会产生巨大的回报。如今的“云计算”,“大数据”,“虚拟化”等各种新技术,都是基于海量数据和用户来实现的,也只有产生质变之后,这些技术才能发挥效能。比如如果一个数据机房只是一个办公大楼的办公网络,那也用不上这些,满足办公楼里人员上网的功能就可以了,一般都不需要多么复杂的数据中心技术,大量的部署“云计算”,“大数据”技术反而是画蛇添足了,所以数据中心需要质变,只有用户和业务积累到一定程度后,各种新的技术才有用武之地。
互联网思维强调开放、协作、分享,组织内部也同样如此,它讲究小而美,大而全,这些特征都是数据中心所需要的。数据中心应该更开放,而不是走向封闭,数据中心应该注重用户体验,而不是简单的关注大小,数据中心应该根据自己业务部署,而不应该盲目地建设得规模过大或多小,只有穿适合自己的鞋才是最舒服的。数据中心和互联网本来就是密不可分的,如今互联网思维影响着整个社会,也对数据中心产生了深远的影响。所有的数据中心新技术都包含有互联网思维在里面,具有了互联网思维的数据中心将是未来数据中心的主要特征。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27