
德讯科技为电力行业打造大数据运营管理平台
互联网、移动应用、物联网、云计算、大数据等技术的快速发展和广泛应用,促使每天产生大量的数据。这些数据记录、反映人们日常的生活行为、经济社会发展状态,已经渗透到经济社会的各个方面和每个环节,成为社会层面一项重要的价值资源;相对于能源行业的信息化发展更是不可或缺。
近几年,伴随信息化的大力发展,电力行业应用不断增加,供电局的日常数据分析与管理工作日趋严峻。目前各大供电局均已具备数据质量及实用化指标展示、问题数据展示、工单处理等功能。通过对营销、生产、人资、财务等关键业务域多条校验规则的建立,实现了问题数据的闭环管理。据不完全统计,目前每月同步的业务系统数据及校验数据量超过500G。
尽管该供电局的数据管理工作取得了可喜的成绩,但对照国际上数据管理的先进经验还存在较多问题:
1)缺乏严谨的方法论和体系;数据管理方法论是指导数据管理工作逐步落实应用的指南,数据管理体系是系统分布实施、分类型和分模块实施的蓝图,有了宏伟的蓝图,才会有好的结果,才能建设好该供电局的数据管理工作。
2)数据的细分没有标准;如何对供电企业现有的数据和未来的数据进行分类,根据数据的不同属性可对数据进行描述的方法多式多样。就供电局目前的具体情况而言,供电局的各应用系统之间,耦合度过紧,共享度过低,不能很好地贯彻电网“纵向贯通、横向集成”的要求和目标。大多数供电局目前只是开展了主数据的建设工作,还没有建立完善的主数据库;参考数据和元数据的建设工作还没有开展。由于没有统一的数据元数据标准及元数据管理系统,导致各个业务系统的数据元数据标准不统一,元数据定义不一致,无法跟踪数据元数据的变更。
为解决以上问题,德讯科技通过分析供电局大数据管理现状,提出 “大数据平台运营管理系统”方案。
该系统解决方案的设计及部署主要遵循电网公司制定的业务数据规范和标准,基于CIM电网公共信息模型,结合供电局的具体业务和数据分析处理需求,完成供电局数据规范和数据标准设计,整合企业核心数据,构建统一完整的主数据视图,以此实现电网数据资源的统一化管理和利用,为后期全生命周期的数据资源和数据资产流程管理和标准设计打下坚实的基础。
该大数据平台运营管理系统将是一个开放的枢纽平台和数据总线,可为设计、开发和运行现有的和未来出现的各种电网综合应用服务系统提供统一的数据规范、统一的数据存储管理和访问方式、以及统一的电网大数据计算分析功能和平台支撑。基于各种业务应用场景数据分析和服务模型、舆情分析监测和客户服务模型,为构建新的电网大数据分析服务系统提供良好的基础。
德讯科技为供电企业全力打造的大数据平台运营管理系统部署完成后,能够成功实现以下重要应用价值:
1.统一集成化管理
从数据源头到系统平台进行统一的规划和设计,提供统一的数据规范,设计实现一体化的电网企业大数据平台,使得在数据层面和系统平台层面都达到“统一规划、统一管理、统一标准、统一平台”的目标和要求,并能基于集成化的数据进行数据资源和数据资产的综合性深度分析挖掘利用和价值发现。
2.全业务支撑
根据数据规范设计并提供全企业范围内的统一数据视图和数据标准;突破传统系统仅能处理结构化数据的缺陷,提供全类型综合性业务数据管理和处理业务;从电网大数据分析计算的角度提供大数据分析计算模式,以满足各种业务需求;从全生命周期数据资源和数据资产管理角度提供数据采集集成、数据存储管理、数据计算分析、数据深度挖掘、预测与决策、数据应用等全过程的管理应用,满足电网企业不同的数据处理和业务应用需求。
3.系统的实时性
大数据平台运营管理系统为电网大数据提供线下分析处理能力,在平台设计方面充分考虑实时性或者准实时性业务需求,从数据采集、数据处理,结果预警,确保系统的低延迟快速响应能力,以便及时发现和处理生产调度及管理中所出现的重要问题。
4.系统的高可靠性
系统构架和平台采用目前业界成熟可靠的大数据处理平台和技术,考虑数据存储和计算时的系统可靠性,具有节点失效检测和恢复的容错处理能力,保证不出现系统问题和数据出错现象。平台采用的大数据处理系统软件采用具有高度可靠性和技术保障的主流大数据处理商用软件系统。
5.部署的高可扩展性
大数据平台运营管理系统构架具有高可扩展性,保证在将来应用系统规模扩大时,能根据需要随时增加节点以扩大系统的数据存储能力和计算能力。
6.高性价比
采用高性价比的普通商用服务器,大大节省系统的构建和维护成本,同时通过大数据平台的分布存储和并行化计算能力提供比传统方案更高的计算性能,获得比传统方案高5-10倍以上的性价比。
7.兼顾现有资源和系统运行
系统规划设计以及后续的应用开发相结合并兼顾企业现有的计算资源、运行系统的实际情况,充分考虑现有计算资源的保留和使用;在保证现有系统和业务平稳运行的前提下,采用逐步试验、试点运行、逐步升级推广的发展策略进行系统更新,保证企业现有系统和业务平稳运行,逐步向新的统一化系统和平台过渡。
综上所述,通过建设大数据管理系统,深度挖掘电网大数据的自身价值,提供各种新的高附加值应用和服务,建立数据资产管理概念,将数据变为企业的重要资产,提高现有生产管理过程的信息化管理水平、保持现有硬资产运营和产品销售盈利稳定增长的同时,通过电网数据资产的价值挖掘和深度利用,使数据资产管理创造一种新的企业盈利增长空间和增长方式,以此创造更高的企业经济效益和社会效益。德讯科技始终坚持“以科技及创新改善IT管理方式”的发展理念,不断创新,始终引领IT设施运营管理的发展新航向。更多详情请关注德讯官方网站或拨打热线电话;亦可扫描下方二维码了解更多产品及活动信息。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10