京公网安备 11010802034615号
经营许可证编号:京B2-20210330
指数社会的蛋白质?英特尔另类解读大数据
从专业词汇到大众热词,大数据仅用了两年,就成为全民热议的高逼格科技流行语之一。说起大数据,谷歌、IBM、IDC都曾从数据的体量、格式和增长速度的维度对大数据进行过定义,而单一从大数据价值角度着眼的定义则比较缺乏。英特尔中国研究院院长吴甘沙日前则别出心裁地从大数据对于社会和经济的影响,以及大数据在商业环境中的价值定义着眼,将大数据解读为“指数社会的蛋白质”。
吴甘沙解释说:随着移动互联时代的到来,数据爆发式增长在指数规律之下已经成为常态,大数据已经被应用在我们身边很多角落,我们甚至已经被大数据包围。“而在数字化的指数社会当中,摩尔定律几乎成为推动指数社会加速发展的原动力,它带来了一系列指数式的连锁反应,”他指出:“如果说摩尔定律是我们指数社会的基因的话,那么大数据就是我们指数社会的蛋白质,它是社会的物质基础、宝贵的资产,甚至是新的货币。”
就如蛋白质对人体的生理运作、免疫功能甚至脑部运作都非常重要,可谓人体生命的基础一样,数据对于现代社会的作用也开始逐渐凸显,在商业、经济及其他领域中,决策将日益基于数据和分析而作出,而并非基于经验和直觉。吴甘沙称:很多行业都已经看到了大数据不可或缺的价值,例如物流业提出“数据就是生命”,制造业希望借助大数据提高效率、改变质量,电商希望借助大数据更好地掌握受众需求、进行个性化推荐……各个行业都开始加入“跟风赶潮流”的大浪当中。“这说明大数据所带来的乘法效应已经在以互联网行业为代表的各个行业中蔓延开来,并衍生出更大量、更具分析应用价值的数据,越来越多基于大数据收集、管理、分析的应用将走向我们的生活。”
实际上,许多传统企业在对大数据的认识上仍存在许多误区。吴甘沙建议不要盲目追赶潮流,仅仿效互联网公司大数据应用的成功经验并不一定能将大数据资产中的价值释放出来。“正如对个人身体情况没有进行全面检查就盲目补充各类蛋白、营养物质可能会对机体造成不良影响甚至反效果一样,企业大数据应用也需要对症下药。”
在吴甘沙看来,“大数据不是一个人在战斗”,其应用需要倾听每个行业,甚至“每一个人”的声音,依照不同的应用模式在软硬件层面进行不同的调整与优化,从而使得新的分析算法能够与实际应用需求紧密配合,将企业真正所需的信号提取出来,之后再针对特定需求进行底层基础设施架构的建设以及软件与硬件之间的相互配合与优化,通过构建开放的基础设施、数据处理平台和参考架构、开放的数据,并进行开放的跨领域合作,使企业应用与大数据之间产生像“金风玉露一相逢”那样产生化学作用。
对于英特尔提出的数据开放与数据交换的构想,具有相同价值观的 Cloudera也不约而同地表达了对未来数据价值的期望。“我们现在不能再只看这些单独的数据,而要所有的数据放在一起来考虑。这后面的驱动因素是什么呢?未来无数通过计算机以及智能终端设备连接互联网的人们,他们都正在推进大数据往开放协作方向发展。”Cloudera首席架构师、Hadoop之父Doug Cutting如是说。
目前,英特尔计划推进的围绕大数据的跨行业和领域的协作创新,已有类似的先例,且正在发挥巨大能效和作用。未来,英特尔开放数据平台还将在安全分析、使用审计和数据定价方面继续提供标准和方案,借助其顶层基于Spark的多方安全计算,“即在不相识的前提下让数据相逢,在一定程度上解决大家所关心的数据隐私安全的问题”,以更好地通过数据的公开与交换发挥大数据的大价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27