京公网安备 11010802034615号
经营许可证编号:京B2-20210330
以解决问题的姿态玩大数据_数据分析师
2011年,著名管理咨询公司麦肯锡声称:“数据已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于大数据的挖掘和运用,预示着新一波生产力增长和消费者盈余浪潮的到来。”由此引发了大数据的热潮,美国政府2012年宣布投资2亿美元启动“大数据研究和发展计划”,IBM,微软、谷歌、亚马逊等大型企业纷纷投入。中国政府紧接着提出“十二五国家政务信息化建设工程规划”,北京、上海、广东等地陆续推出大数据研发战略,阿里、百度、腾迅、华为等大型企业都已涉足该领域,更有许多新兴企业致力于此,大数据成为了继物联网、云计算、移动互联网之后,又一个信息技术产业发展的制高点!
所谓大数据,必须有足够大的数据量才能发挥它的价值。但是,由于现阶段互联网数据真实性的问题,物联网数据量不够的问题,以及数据安全的问题,对大数据走向应用产生了较大束缚,以至于大部分大数据应用只能存在于“实验室中”,且大数据厂商开始纠结单点上的数据精度,单这一点便是有悖于大数据发展常规的。
在如此现状之下,罗克佳华—这家有着计算机系统集成一级资质,属“应用基因”系的企业涉足大数据,是否能够独善其身,让大数据概念回归本位呢?且看罗克佳华董事长李玮在接受本刊专访时的“如是说”。
我们不是实验室
“罗克佳华做大数据,从不追求一个点的精度,我又不是实验室!我要通过广泛布点的方式获取更多的数据,找到源头,提供解决问题的依据,也就是说,罗克佳华从来不做实验室里的大数据,只从解决问题的角度做可用的大数据。”李玮一句话,态度明确:我—罗克佳华做的所有工作都是以解决问题为目的,以应用为宗旨。
李玮说,首先罗克佳华是一家标准的物联网企业,因此就要做物联网企业该做的事。那么,物联网企业该做什么呢?“我们认为,物联网的规模性必定导致集中的数据服务,也就是说物联网的大量感知终端将产生前所未有的集中的数据量,而这些集中数据通过各种算法,依据各种需求,将延伸出无以数计的服务,这些服务才是物联网的真正价值所在。”而罗克佳华这些年,不管是卖设备,还是卖解决方案,都没落下一件事,就是提供服务。因此,在物联网时代,依据物联网发展线路图,罗克佳华将自己的发展布局做了更为清晰的调整:走云+端之路,“云+端的意思,就是物联网技术和数据服务的结合”。
如何提供更好的服务,罗克佳华也并非一开始就找到了门路。比如在环保监测方面,也做了多种尝试,比如先是重视监测,后来才发现“点多面广的综合监测”得到的效果更好,便将轻监测、广布点的模式推广到其他诸如农业溯源、煤矿安全等领域中。
例如罗克佳华为北京通州做的环保物联网系统,将所有的环保信息化系统进行整合,并结合大家关注的空气质量问题,在全区范围布设了 500个监测点,进行物联网监测,同时将各个工业污染源、农村面源、汽车尾气等导致空气质量变化的排放清单进行实时分析,不仅做到了物联网监测,也充分发挥了数据分析优势,实现了对空气质量的预警预报,以及对环保工作的综合优化管理。
愿景VS红线
至此,罗克佳华的“智能端”和“云服务”形成了一种相辅相成的促进作用,计划在几年内成为节能、环保领域内最强的物联网服务型企业。但成功之路必有坎坷,云+端模式要发展有一个非常重要的基础条件,即政府和行业对数据质量、价值、权益、隐私、安全等产生充分认识,出台量化与保障措施。也就是“数据权属”和“企业观念”两个问题。而正如前文所言,中国目前仍处在大数据的起步阶段,相关立法颇多空白,国内企业的意识也有待转变。
罗克佳华的服务方式是通过监测系统获得真实有效的数据进行分析,可几乎所有用户都在系统布设之后谈及数据保密问题,对项目产生了巨大的干扰。更有甚者,罗克佳华曾试图将一些污染源数据向同行的企业开放,便于他们在对比中提高自己,但这些隐去了名字的数据在不久后就被企业告了状,最后由政府出面叫停。
“物联网数据经常会触到红线,数据运营,如履薄冰啊!”李玮直言数据权属问题是挡在他们身前的“拦路虎”,更是他们将来必须解决的核心问题。不说罗克佳华有许多政府合作项目,导致权属问题更加复杂,光是环境数据及工业设备信号等公共数据如何界定、如何共享都已是非常纠结的问题。
不过,虽然有这方面的忧虑,但毕竟前路漫漫,还有许多未知数,罗克佳华在行动上并没有丝毫的犹豫。本着应用为先的原则,只要是有利于推广和应用的项目,不管是政府买单或是市场化,他们都会积极去做。为了拿出更加专业的精品,他们更以开放的姿态寻求跨界的合作企业和专家团队。“我们做技术的,做好技术,社会要发展,体制待改善,机会就有的。物联网数据要和同行业开放才会更有活力和竞争力,开放的意识形态才会造就开放的国家。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29