
企业何时才能从大数据中赚到人民币_数据分析师
大数据中蕴含着大价值,相信每一位关注IT技术创新的人都会听过这句话。没错,从海量数据中筛选出有用的信息,然后通过各种手段将信息转化为洞察力,从而做出正确决策,推动业务发展。在这样一个信息链条中,企业需要确保每一个环节都不出错,才能将数据转化为价值。然而又有多少企业真正能做到这一点呢?少之又少!大数据很火,但是何时才能让大数据真正为企业带来盈利?对此,数据分析和市场营销专家Brooks Bell在Techonomy上发表了她的观点。
麦肯锡机构称,大数据将成为“下一代企业竞争力,生产力以及创新的前沿”。但现状是,许多企业和管理者开始盲目收集数据并进行分析,期待能够得到快速的回报。很遗憾,他们未能如愿。大多数企业距离从数据中提取利润都差着十万八千里,这可不仅仅是缺少合适的技术。想让大数据真正对企业盈利造成影响,就需要解决三大根深蒂固的挑战。
第一,“拍脑袋”做决策的方式还很普遍。在商业世界里,“最高权利者”的意见对决策会造成极大影响,这种现象非常普遍。这是许多企业的通病,大数据可以对此进行纠正。然而真正做到需要企业观念的转变,领导在做出决策时要摆脱“拍脑袋”的坏习惯,让真实的数据说话。只是收集更多数据,对于推翻这种心态一样于事无补,甚至会让观念的转变过程变得更加艰难。
在最近火到一塌糊涂的畅销书《信号与噪声(The Signal and the Noise)》中,作者Nate Silver提到“如果天气预报员与民众互相不信任的话,那么即便在真正需要的时候民众也不会去听天气预报了”。这就像是CEO与数据之间存在的“狼来了”的问题。如果分析是错误的,或者更糟糕的情况——数据从一开始就没有收集正确,那么决策者肯定会对信息和提供信息的员工失去信任,从而再次回到“拍脑袋”的时代。
第二个挑战就是人才技能的不足。就目前来说,能玩转大数据的人才远远无法满足企业的需求量。硅谷之父万尼瓦尔·布什(Vannevar Bush)在70年前就说过这样一句经典的话:“未来将会有信息的开荒者,这些人会在大量普通记录中寻找线索,并自食其乐。”然而,根据麦肯锡机构的报告,目前在美国只有19万接受过严格训练的数据分析师,这一数量远远无法满足大数据时代的需求。
根据SAS研究院和IDG机构的一项调查报告显示,57%的参与者认为他们自己在数据分析方面缺少合格的技能和经验。而对分析任务缺少信心只是挑战的一部分,从事数据相关工作的员工还需要在以足够的精度来收集合适的度量方法方面下更多功夫。
企业管理者不必非要招聘一群数据科学家级别的精英来直接向其汇报,他们需要在各个层面鼓励机构培养分析师,传授核心技能、最佳实践,在此过程中要尽量做到精确。这样能够增加透明度,鼓励对数据的需求并帮助传播必不可少的技能。
知道如何处理数据则是第三个挑战。即便在解决上述两个问题之后,也要弄清什么样的业务能够通过大数据获得收益。如果不能指导行动,那么收集再多的数据也是毫无意义的。事实上,获得洞察力是一方面,可实践性也是分析的标志之一。那么企业能否从大量历史数据的“噪音”中获得可实践的预测以及具有前瞻性的决策?
举例来说,一家手机制造商也许能够收集大量的消费者数据,除非这些数据能够应用到实践当中,从而改善客户体验,否则它只具有理论上的价值。再比如,一家连锁零售企业通过精准的邮件营销获得客户的信息,但如果销售部门没有合理利用这些信息,那么销售机会就会稍纵即逝。大数据想要获得大成功,数据的文化就必须传播给企业的每一位员工。
不仅仅是在大数据时代,对数据的“不适感”是导致这一问题的主要原因,大数据只不过把这一问题放大了。小说家博尔赫斯在《巴别图书馆》中就曾描述过这一问题。宇宙充斥着无数图书馆的书架,其中摆放着看上去一样的书,每一本书由不同随机组合的字母和标点组成。在这个图书馆当中,所有的想法和事件都会被记录下来,但任何洞察都隐藏在数不清的废话里。博尔赫斯笔下的图书馆管理员没办法利用这一庞大的资源,只能蒙混过关。这与企业对大数据的应用情况又有什么分别呢?
Nate Silver也提到了这一点,他认为从噪声中辨别有用的信号既需要科学知识,也需要自我认识:平静地接受我们无法预测的事,也要勇于预测我们能够预测的事,智慧就在于如何辨别二者。换句话说,数据无法用来揭露真相,它只能提出假设,然后我们再通过反复的测试与实践来证明。
大数据给人以希望。但是我们要做的,是理解数据的重要性,然后在规划的每一个阶段以及企业的每一个层级中充分利用数据。掌握小数据部署利用好大数据的充分条件,而是必要条件。企业关注的重点应该是,让更多的员工,更有规律地,更好地利用那些可管理的数据。然后让业务逐渐能够基于数据来采取行动,只有这样才能让大数据之梦成为现实。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28