京公网安备 11010802034615号
经营许可证编号:京B2-20210330
搞设计,是听从直觉,还是听从数据_数据分析师
作者Braden Kowitz 是 Google Ventures 的Design Partner,曾领导设计多款Google产品,包括Gmail、Google Enterprise、Google Spreadsheets 与 Google Trends。
对于很多科技公司来说,设计已不再是随心所欲的事情,它往往需要与数据挂钩,通过用户行为分析来测算甚至是极其微小设计的效果。这种源源不断的数据流在决定新产品及其形式中的作用越来越大。那么,设计师自己的直觉还重要么?
搞设计时,用户数据与个人直觉总是相互对立,在过去,设计部门看重直觉,是因为在设计过程中评价其效果十分困难,产品不上市,设计师就不知道设计好坏。但如今像 Facebook 与 Google 这样的数字产品更加看重数据,因为他们完全能够一边设计一边获得用户反馈。
根据我与 80 多个产品团队工作的经验来看,数据意义重大,直觉不可替代,所以最大的挑战是,如何在用户数据与个人直觉间找到平衡点。
我在 Google 最初的几个项目之一就是设计“Google Checkout”按钮,它被用作网上购买物品及服务。设计按钮向来容易,但这次却大不同,因为用户能在几种支付方式中做出选择,所以该按钮必须在热闹的网页上吸人眼球。在每一次反馈中,我总被要求把按钮做得更粗、更大、更醒目、甚至看起来更加可以被点击。慢慢地,设计变得浮夸,直到最后,丑陋不堪。
值得一提的是,我的一名同事设计了可能是他想到的最吸引人的按钮:一个写有“FREE iPOD”的巨型 3D 按钮,火焰翻滚,下面附上极为细小的“Checkout for a chance to win”。
此举重启了我们的讨论:我们不仅要高点击率,更要对结果进行预告,与用户交流,增加熟悉度,建立品牌信任。
利用数据我们能很容易知道哪种设计带来了更多点击,并能依此选择最优解,但这样做却忽视了整体情况和其它的重要目标。
数据对增量式的改进甚为有用,但有些目标是难以被测算的,这时候,我们必须依靠直觉。
没有设计师生来就知道用户要什么,以及人们面对一个崭新设计时会作何反应,通过观察身边事物,直觉于后天习得。人脑是一个神奇的模式匹配机器,每当我们了解到一个新设计以及其效果时,直觉在无形中就被改造了。
设计师留心观察身边事物,留意缺陷——示意你推的门把手实际上却需要你拉,在开车时手机上的一个小按钮极其难找。相信我,对身边事物留意到如此地步确能让人厌烦,不仅对设计师还是对他们身边的人。但如此细心也会有好处。当设计师发现缺陷时,会思考为何会这样、这牵涉到了哪些设计、如何设计就能解决问题。像这样的每一次思考,都在慢慢构建个人设计理念,即所谓“直觉”。
但是,这种自省只能把设计师带到这么远,因为设计的受众在诸多方面跟我们不同:年龄、文化语境及其带来的期望上的差异。
即使在设计师认为用户与其相差无几时,也一定存在着一个不同点:设计师精通于他们自己的产品,而新用户对产品一概不知。既然无法忘却我们已经知道的东西,所以有必要进行用户研究。
观察用户使用产品绝对是发展直觉及防止错误的最好办法,用户研究其实就是一种定性的数据流,虽混乱,但宝贵。
直觉驱动 vs 数据驱动的黄金原则
当用户对产品设计不满意时,团队中从工程师到 CEO 的每个人都必须将其设计直觉发挥出来。但不要让直觉掌控了一切,关键在于判断何时该听从数据,何时该听从直觉。
想了解用户行为?听从数据。
任凭用户如何否认,数据是硬的。
提高产品质量?听从直觉。
设计中的单个细微改良无法从数据中获得肯定,但它们一旦融合,便能高端大气上档次。
在少量选项中选择最佳?听从数据。
想做增量式的改进,数据最有发言权。
在乎长远影响?听从直觉。
当你想实现长远目标时,比如建立产品信任度,那么请看看这个世界,多与人交流,相信直觉。
数据与直觉,看似壁垒分明,实则相通。数据统计让硬数据直观呈现,而直觉,对来自于日常观察生活所得的软数据做了同样的处理,所以,对于一个成功的产品,直觉与数据,缺一不可。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09