京公网安备 11010802034615号
经营许可证编号:京B2-20210330
搞设计,是听从直觉,还是听从数据_数据分析师
作者Braden Kowitz 是 Google Ventures 的Design Partner,曾领导设计多款Google产品,包括Gmail、Google Enterprise、Google Spreadsheets 与 Google Trends。
对于很多科技公司来说,设计已不再是随心所欲的事情,它往往需要与数据挂钩,通过用户行为分析来测算甚至是极其微小设计的效果。这种源源不断的数据流在决定新产品及其形式中的作用越来越大。那么,设计师自己的直觉还重要么?
搞设计时,用户数据与个人直觉总是相互对立,在过去,设计部门看重直觉,是因为在设计过程中评价其效果十分困难,产品不上市,设计师就不知道设计好坏。但如今像 Facebook 与 Google 这样的数字产品更加看重数据,因为他们完全能够一边设计一边获得用户反馈。
根据我与 80 多个产品团队工作的经验来看,数据意义重大,直觉不可替代,所以最大的挑战是,如何在用户数据与个人直觉间找到平衡点。
我在 Google 最初的几个项目之一就是设计“Google Checkout”按钮,它被用作网上购买物品及服务。设计按钮向来容易,但这次却大不同,因为用户能在几种支付方式中做出选择,所以该按钮必须在热闹的网页上吸人眼球。在每一次反馈中,我总被要求把按钮做得更粗、更大、更醒目、甚至看起来更加可以被点击。慢慢地,设计变得浮夸,直到最后,丑陋不堪。
值得一提的是,我的一名同事设计了可能是他想到的最吸引人的按钮:一个写有“FREE iPOD”的巨型 3D 按钮,火焰翻滚,下面附上极为细小的“Checkout for a chance to win”。
此举重启了我们的讨论:我们不仅要高点击率,更要对结果进行预告,与用户交流,增加熟悉度,建立品牌信任。
利用数据我们能很容易知道哪种设计带来了更多点击,并能依此选择最优解,但这样做却忽视了整体情况和其它的重要目标。
数据对增量式的改进甚为有用,但有些目标是难以被测算的,这时候,我们必须依靠直觉。
没有设计师生来就知道用户要什么,以及人们面对一个崭新设计时会作何反应,通过观察身边事物,直觉于后天习得。人脑是一个神奇的模式匹配机器,每当我们了解到一个新设计以及其效果时,直觉在无形中就被改造了。
设计师留心观察身边事物,留意缺陷——示意你推的门把手实际上却需要你拉,在开车时手机上的一个小按钮极其难找。相信我,对身边事物留意到如此地步确能让人厌烦,不仅对设计师还是对他们身边的人。但如此细心也会有好处。当设计师发现缺陷时,会思考为何会这样、这牵涉到了哪些设计、如何设计就能解决问题。像这样的每一次思考,都在慢慢构建个人设计理念,即所谓“直觉”。
但是,这种自省只能把设计师带到这么远,因为设计的受众在诸多方面跟我们不同:年龄、文化语境及其带来的期望上的差异。
即使在设计师认为用户与其相差无几时,也一定存在着一个不同点:设计师精通于他们自己的产品,而新用户对产品一概不知。既然无法忘却我们已经知道的东西,所以有必要进行用户研究。
观察用户使用产品绝对是发展直觉及防止错误的最好办法,用户研究其实就是一种定性的数据流,虽混乱,但宝贵。
直觉驱动 vs 数据驱动的黄金原则
当用户对产品设计不满意时,团队中从工程师到 CEO 的每个人都必须将其设计直觉发挥出来。但不要让直觉掌控了一切,关键在于判断何时该听从数据,何时该听从直觉。
想了解用户行为?听从数据。
任凭用户如何否认,数据是硬的。
提高产品质量?听从直觉。
设计中的单个细微改良无法从数据中获得肯定,但它们一旦融合,便能高端大气上档次。
在少量选项中选择最佳?听从数据。
想做增量式的改进,数据最有发言权。
在乎长远影响?听从直觉。
当你想实现长远目标时,比如建立产品信任度,那么请看看这个世界,多与人交流,相信直觉。
数据与直觉,看似壁垒分明,实则相通。数据统计让硬数据直观呈现,而直觉,对来自于日常观察生活所得的软数据做了同样的处理,所以,对于一个成功的产品,直觉与数据,缺一不可。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16