
搞设计,是听从直觉,还是听从数据_数据分析师
作者Braden Kowitz 是 Google Ventures 的Design Partner,曾领导设计多款Google产品,包括Gmail、Google Enterprise、Google Spreadsheets 与 Google Trends。
对于很多科技公司来说,设计已不再是随心所欲的事情,它往往需要与数据挂钩,通过用户行为分析来测算甚至是极其微小设计的效果。这种源源不断的数据流在决定新产品及其形式中的作用越来越大。那么,设计师自己的直觉还重要么?
搞设计时,用户数据与个人直觉总是相互对立,在过去,设计部门看重直觉,是因为在设计过程中评价其效果十分困难,产品不上市,设计师就不知道设计好坏。但如今像 Facebook 与 Google 这样的数字产品更加看重数据,因为他们完全能够一边设计一边获得用户反馈。
根据我与 80 多个产品团队工作的经验来看,数据意义重大,直觉不可替代,所以最大的挑战是,如何在用户数据与个人直觉间找到平衡点。
我在 Google 最初的几个项目之一就是设计“Google Checkout”按钮,它被用作网上购买物品及服务。设计按钮向来容易,但这次却大不同,因为用户能在几种支付方式中做出选择,所以该按钮必须在热闹的网页上吸人眼球。在每一次反馈中,我总被要求把按钮做得更粗、更大、更醒目、甚至看起来更加可以被点击。慢慢地,设计变得浮夸,直到最后,丑陋不堪。
值得一提的是,我的一名同事设计了可能是他想到的最吸引人的按钮:一个写有“FREE iPOD”的巨型 3D 按钮,火焰翻滚,下面附上极为细小的“Checkout for a chance to win”。
此举重启了我们的讨论:我们不仅要高点击率,更要对结果进行预告,与用户交流,增加熟悉度,建立品牌信任。
利用数据我们能很容易知道哪种设计带来了更多点击,并能依此选择最优解,但这样做却忽视了整体情况和其它的重要目标。
数据对增量式的改进甚为有用,但有些目标是难以被测算的,这时候,我们必须依靠直觉。
没有设计师生来就知道用户要什么,以及人们面对一个崭新设计时会作何反应,通过观察身边事物,直觉于后天习得。人脑是一个神奇的模式匹配机器,每当我们了解到一个新设计以及其效果时,直觉在无形中就被改造了。
设计师留心观察身边事物,留意缺陷——示意你推的门把手实际上却需要你拉,在开车时手机上的一个小按钮极其难找。相信我,对身边事物留意到如此地步确能让人厌烦,不仅对设计师还是对他们身边的人。但如此细心也会有好处。当设计师发现缺陷时,会思考为何会这样、这牵涉到了哪些设计、如何设计就能解决问题。像这样的每一次思考,都在慢慢构建个人设计理念,即所谓“直觉”。
但是,这种自省只能把设计师带到这么远,因为设计的受众在诸多方面跟我们不同:年龄、文化语境及其带来的期望上的差异。
即使在设计师认为用户与其相差无几时,也一定存在着一个不同点:设计师精通于他们自己的产品,而新用户对产品一概不知。既然无法忘却我们已经知道的东西,所以有必要进行用户研究。
观察用户使用产品绝对是发展直觉及防止错误的最好办法,用户研究其实就是一种定性的数据流,虽混乱,但宝贵。
直觉驱动 vs 数据驱动的黄金原则
当用户对产品设计不满意时,团队中从工程师到 CEO 的每个人都必须将其设计直觉发挥出来。但不要让直觉掌控了一切,关键在于判断何时该听从数据,何时该听从直觉。
想了解用户行为?听从数据。
任凭用户如何否认,数据是硬的。
提高产品质量?听从直觉。
设计中的单个细微改良无法从数据中获得肯定,但它们一旦融合,便能高端大气上档次。
在少量选项中选择最佳?听从数据。
想做增量式的改进,数据最有发言权。
在乎长远影响?听从直觉。
当你想实现长远目标时,比如建立产品信任度,那么请看看这个世界,多与人交流,相信直觉。
数据与直觉,看似壁垒分明,实则相通。数据统计让硬数据直观呈现,而直觉,对来自于日常观察生活所得的软数据做了同样的处理,所以,对于一个成功的产品,直觉与数据,缺一不可。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28