京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		大数据与中国的战略选择(1)_数据分析师
	
今天,大数据(big data)一词正越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数据。随着经济社会的发展,大数据可能带来的深刻影响和巨大价值日益被认识,它通过技术的创新与发展,以及数据的全面感知、收集、分析、共享,为我们提供了一种全新的看待世界的方法,其带来的信息风暴正全方位地改变着我们的生活、工作和思维。面对这样一种情势,我们应当以什么态度来迎接大数据时代的到来?如何使大数据为我所用?这些问题亟须我们从学理上作出科学回答。
人类社会的每一次进步,都是由新技术引发新一轮产业革命、进而引发政府管理和社会治理模式的重大变革而推动的。科技革命不断推动着产业的发展,只有那些抓住技术革命的战略机遇并迅速作出适应性调整的国家或民族才能不断生存发展,无视变化或拒绝变化的国家或民族将面临停滞和衰落。现在又到了必须选择的时刻。同以往不同,发生在大数据时代的技术革命是基于纳米技术、生物技术、信息技术和认知科学多学科联动的,这必将引发井喷式的产业创新。
大数据支撑新时代
大数据,或称巨量资料,是指所涉及的资料量规模巨大,以致无法通过目前主流软件工具在合理时间内撷取、管理、处理并整理成为帮助企业达致经营决策目的的资讯。大数据技术不仅能够提高人们利用数据的效率,而且能够实现数据的再利用和重复利用,进而大大降低交易成本,提升人们开发自我潜能的空间。人们可以低成本或零成本进行事物信息全息式的纵向历史比对和横向现实比对。大数据技术自身不仅能够迅速衍生为新兴信息产业,还可以同云计算、物联网和智慧工程技术联动,支撑一个信息技术的新时代。
云计算、物联网、大数据、智慧工程都是新一代信息技术。云计算技术是一种按使用量付费的模式,这种模式可以提供可用的、便捷的、按需的网络访问,进入可配置的计算资源共享池(资源包括网络、服务器、存储、应用软件、服务),这些资源能够被快速提供,只需投入很少的管理工作,或与服务供应商进行很少的交互。云计算技术可以使人们及时利用各类大数据。物联网技术的实质就是物物相连的互联网,物联网的核心和基础仍然是互联网,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信。物联网技术可以溯源大数据和保证信息的真实性。智慧工程就是把感应器嵌入和装备到电网、铁路、桥梁、隧道、公路、建筑、供水系统、大坝、油气管道等各种物体中,并且进行普遍连接,与现有的互联网整合起来,实现人类社会与物理系统的整合。智慧工程可以激活沉寂的大数据。
可见,云计算、物联网、大数据、智慧工程四者之间有着紧密的联系。云计算是互联网的广泛普及和深度应用,实现了从芯片操作系统、应用软件到服务产业链的垂直整合。物联网突破了机器到机器的连接,是感知、传输、处理等技术高速发展的产物。大数据是大量数据的处理技术,实现了从数据到知识的飞跃。智慧工程基于云计算、物联网和大数据技术,实现完美结合,将数据、知识、设备、网络转换成为智慧。
大数据引领新发展
资源配置实现灵动化。物联网通过智能感知、识别技术与普适计算、泛在网络的融合应用,实现全球资源的网联。在此基础上,云计算使全球资源实现了从“端”到“云”的重新分布,给全球资源配置方式带来全局性的颠覆、整合和创新。随着全球网联水平的不断提高,云计算、物联网、大数据、智慧工程在社会生活和经济各行业中将愈发起到基础性和工具性作用,并将带来全球经济乃至社会的变革,改变人们的生活、工作甚至思考的方式。在新技术支撑下,资源配置不再受制于地理位置、物理状态,而是能按需调配,呈现灵动化趋势。
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28