京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代的大媒体_数据分析师
大数据时代,媒体的转型发展,既是技术问题,也是战略问题,将对未来的媒体形态和格局产生深远影响
经过一年的蓄势待发,新年伊始,“大数据”的概念火了。
大数据有多火?有媒体将2013年称为“大数据元年”。目前,几乎所有世界级的互联网企业,都将业务触角延伸至大数据产业;无论社交平台逐鹿、电商价格大战还是门户网站竞争,都有它的影子;去年美国政府投资2亿美元启动“大数据研究和发展计划”,更将大数据上升到国家战略层面。大数据,正由技术热词变成一股社会浪潮,影响社会生活的方方面面。
大数据时代,媒体的转型发展,既是技术问题,也是战略问题,将对未来的媒体形态和格局产生深远影响。
数据就是资源
信息爆炸推动媒体转型
大数据并不是一个新概念,但大数据时代却是伴随着近年来信息爆炸式增长而来。
互联网上,每天新浪微博用户发博量超过1亿条,百度大约要处理数十亿次搜索请求,淘宝网站的交易达数千万笔,联通的用户上网记录一天达到10TB……
数据量的爆发式增长也带来了数据储存方式的革命。“今天我们花不到100美元就可以买到1个T的存储,成本只是10年前的1%。”微软亚太研发集团首席技术官孙博凯说。在2000年,数字化储存的信息只占全球数据量的1/4,而在2007年,所有数据中只有7%是储存在报纸、书籍、图片等媒介上,其余全是数字数据。
“新媒体的本质就是数据分析。我们已经从信息时代走到了数字时代和智能时代,如果数据被赋予背景,它就成了信息;如果数据能够提炼出规律,它就是知识;如果数据能够借助于各种各样的工具在分析的基础之上为我们提供正确的决策,它就是资源。”解放日报报业集团社长尹明华在近日举行的中国传媒大会上说。
大数据时代,信息的内涵已不仅仅是消息等新闻,而是各种各样的数据。这就要求媒体必须适应新的信息生产和传播方式,以多元化媒介来承担信息传播的职能。生产、分析、解读数据,探索一条为受众和用户提供分众化服务和体验的媒体发展之路,将成为媒体竞争的必备技能。
量身打造资讯 媒体转型发展新思路
中国社科院信息化研究中心秘书长姜奇平说,“媒体通过对数据的整合和分析,针对不同的受众需求,满足个性化和专业化的需求。”
腾讯网总编辑陈菊红说:“目前门户网站之间、网络媒体之间同质化非常严重。未来的媒体和门户网站应充分利用大数据和关系链,在为用户筛选、推荐最适合的内容,提供近乎量身打造的新闻资讯的同时,使他们体验社交媒体的感受。”
从理论到实践,大数据的发展为掌握了大量数据源的媒体和门户网站提供了转型的良好契机。过去一年,国内几家大的互联网企业纷纷调整自己的发展战略,迎接大数据时代的到来。
浙报集团去年开始投资数据分析项目,将目光放在了未来社交网络的数据深度挖掘上;优酷和土豆合并,搜索平台可以挖掘和推算出4亿多视频用户的浏览行为数据;搜狐正着手搭建基于云计算的大数据平台,将旗下数据资产全面打通整合,获取每月9亿多人次的用户数据资产;腾讯启用新版首页,并启动门户、微博、视频、无线的跨平台深度整合战略……在云计算、移动互联网等新技术推动下,一场关于数据的圈地运动正在互联网上拉开大幕,竞争日益激烈。
挑战也是机遇
赢得大数据时代的主动权
大数据时代的媒体转型和发展,需要结合自身特色,走一条符合传播规律、符合自身实际、符合受众需求的发展之路。这对媒体既是机遇也是挑战。
大数据考验媒体的战略决策能力。姜奇平说:“数据量的快速增长,需要在带宽和存储设备等基础设施方面加大投入,这令很多媒体进退维谷。”不转型,就会丧失主动权,被淘汰或边缘化;要转型,就要对当前的报道形式和运行体系进行全面改造。这将考验决策者的胆魄和智慧。
媒体应对大数据时代的另一个挑战是数据加工能力的匮乏。专家指出,当前大数据建设缺乏专门的数据分析方法、使用体系和高端专业人才,很多媒体没有专门的数据管理和分析部门和专家。如果软件跟不上,却一窝蜂地投身数据平台的搭建,对媒体长远发展不利。
有媒体担心,在大数据时代的转型道路上,媒体是否会迷失方向,变成咨询公司或是社交网站?
对此,孙博凯说:“老技术既有的投资、数据和价值观,是不可能被新技术全部抹杀的,而是融合、整合到新的业务中去,在更高层次上得以发展。”媒体也应该有这样的信念。只有积极谋略全局,着眼长远,才能赢得大数据时代的主动权。
链 接
什么是大数据
早在1980年,著名未来学家阿尔文·托夫勒便在《第三次浪潮》一书中,将大数据热情地赞颂为“第三次浪潮的华彩乐章”。不过,大约从2009年开始,“大数据”才成为互联网信息技术行业的流行词汇。美国互联网数据中心指出,互联网上的数据每年将增长50%,每两年便将翻一番,而目前世界上90%以上的数据是最近几年才产生的。此外,数据又并非单纯指人们在互联网上发布的信息,全世界的工业设备、汽车、电表上有着无数的数码传感器,随时测量和传递着有关位置、运动、震动、温度、湿度乃至空气中化学物质的变化,也产生了海量的数据信息。
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19