
大数据时代 树立大数据意识(2)_数据分析师
二,大数据的六个维度
1.安全维度
没有国家信息安全的技术保障和环境氛围,国家的数字主权会受到侵害,国家的网络边防将受到威胁,国家在经济全球化和世界多极化持续推进过程的发展利益将难以维护;对内而言,没有国家信息安全的法律体系建设和舆论引导,国家的政治安全会带来挑战,各类非传统安全会造成侵害,社会的稳定会受到威胁。
大数据时代,线上与线下、虚拟与现实、软件与硬件重叠交错、跨界影响,尤其是核心的大数据不可避免地成为各种利益诉求的集散地、国与国之间进行渗透的重要渠道。数据安全既影响商业、金融等经济安全,也可能涉及文化意识形态等精神领域,甚至可能会激发社会动荡、改变战争形态、影响国家安全。
明确大数据采集和使用所涉及的包括数据隐私、准确性、可获取性、归档和保存等问题在内的应用规则,厘定信息使用权限和职责,确保数据依照规则规范使用。要重视大数据安全体系建设。大数据涉及政府数据公开,所以大数据的安全防护,需要有全新的模式,不仅要重视对大数据本身的安全保障,还要注重大数据平台的安全建设。
2.管理维度
数据安全管理问题,是我国应用大数据面临的最大风险。虽然将海量数据集中存储,方便了数据分析和处理,但由于安全管理不当所造成的大数据丢失和损坏,则将引发毁灭性的灾难。
筑牢我国大数据安全管理的“三道防线”,强化数据安全立法工作,防止“大而无序”;尽快实现对关键装备、核心领域与人才的自主自控,防止“大而无力”;高度重视大数据显隐价值保护,防止“大而无安”。总之,要以国家核心安全需要为牵引,多措并举实现大数据安全保障。
3.政府治理维度
大数据为政府治理能力的提升带来了发展机遇。首先是为推动政府治理理念和模式的变化带来机遇。在政府治理领域,通过让海量、动态、多样的数据有效集成为有价值的信息资源,推动政府转变管理理念和治理模式,进而加快治理体系和治理能力现代化。其次是为推动政府治理决策精细化和科学化带来机遇。
从政府层面来说,大数据可以将原本分散存储在不同部门、行业、主体的数据作为整体加以利用,实现统一管理,为信息分析、利用、开放提供基础。同时,大数据的信息平台,使数据资料更加全面,政府部门间的数据信息调用将更加方便快捷,可以有效地提高工作效率。大数据处理模式和大数据技术的应用,可以使政府决策更具科学性、共识性;帮助政府在第一时间内获得市场数据,有利于对市场的监管;提升公共管理和服务能力,有利于定制个性化服务。
4.互联网思维维度
互联网思维是一个多元概念。一般认为,互联网思维指在(移动)互联网、大数据、云计算等科技不断发展的背景下,对市场、对用户、对产品、对企业价值链乃至对整个商业生态进行重新审视的思考方式,本质是发散的非线性思维。
将大数据和社会治理紧密结合起来,改进网络舆情源头治理。将大数据和网上政务信息公开紧密结合起来,提升政府公信力。将大数据和日常舆情管理紧密结合起来,提高网络舆情整体掌控能力。将大数据和突发事件应对紧密结合起来,提高网络舆情应急处置能力。将大数据和舆论引导紧密结合起来,提高感染力和说服力。
5.生存维度
大数据是数字化生存时代的新型战略资源,正在改变人类的生产和生活方式,对国家和社会发展作用巨大。近年来,大数据引起各国科技界、产业界和政府部门的高度关注。
作为个体则必须在这个特定的环境中对自己的目的、价值和意图进行重建,从而达到强调自己个性和分享他人个性的理解。任何技术都倾向于创造一个新的人类环境。而信息技术、电脑网络乃至最近问世的大数据,已经为人类创造出一个崭新的环境。
6.实践维度
大数据时代,只有让政府以及各社会主体在合理共享各种最新数据的基础上,发挥各自的优势,深度挖掘数据的价值,在提供公共服务的方式、内容和机制上不断创新,以适应快速变化的社会需求和环境,才能不断提高我国的国家治理能力和实现社会治理方式的创新。深圳市福田区充分认识基础数据的重要性,在如何保证动态、精准、充分占有基础数据方面进行了卓有成效的创新和探索。
把大数据的手段和方法引入管理领域,是实现管理现代化的有效路径,也是大数据时代的必然要求。在广东省,伴随着经济的迅猛发展,地方税收纳税登记户从1994年60多万户增加到2011年的285多万户,地税收入从184亿元增加到4248亿元,而同期,地税系统干部人数仅增加了20%。海量数据的即时获取和精确分析成为摆在管理者面前的一道难题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28