
"怎样用“大数据”降低网络安全成本_数据分析师
面对网络威胁的不断快速翻新升级,很多企业中安全管理策略存在着过期风险,在落后的威胁预警机制下,企业很有可能成为数据泄露的受害者。然而另一方面,在很多注重风险评估的用户中,虽然网络安全风险得到了一定的控制,但却普遍遇到了人力成本攀升的难题。安全与成本看起来正在成为一对难以协调的矛盾。那么,如何在不添人手的情形下,有效地阻止网络安全危机爆发?如何在更广泛的数据分析中,让系统更容易得出正确的安全策略呢?WatchGuard认为,大数据的思想或许能帮上忙。
如今,安全专业人员匮乏的情况非常普遍。一份来自全球企业增长咨询公司Frost & Sullivan的报告显示:在访问了12000多位信息安全专业人士的调查中,有56%的受访者表示他们的机构缺少网络安全方面的专业人才,同时也难以筹措资金负担这方面的投入。
在新西兰首都惠灵顿,一家为用户提供云基础架构和安全托管的服务商便遇到了这个问题。虽然信息安全日益被重视使得许多客户选择了他们这家安全服务公司,但在收益增加的同时,作为MSSP安全服务商,他们与客户的情况类似,同样遇到了缺人的难题。公司的决策层表示,从安全风险的角度考虑,绝不能放过每条可疑的日志,因为这是帮助客户排除威胁,保障服务质量的关键。但人手不够、尤其是高级网络威胁分析人员紧缺的情况越来越明显,再加上工程师都被繁琐的日志分析工作拖住了,这消耗了所有人的精力,并严重制约了公司业务的发展速度。
在寻找解题答案的过程中,这家MSSP选择了WatchGuard推出的Dimension解决方案。全新的分析系统采用了云计算[注]和大数据技术,非常方便地就能洞察到安全威胁和发展趋势的关键点。公司技术总监表示:他们的业务部门完全可以放开手脚,因为Dimension云安全网络解决方案帮助技术部门实现了智能化、敏捷化、简单化的日志分析工作,并在威胁预警、追踪和分析能力不再完全依靠人力。而Dimension的分析报告更成为了业务收入的增长点,自动化实时生成的威胁评估报告,以及对应的安全策略建议,都为MSSP的客户提供了最高级别的服务。
Dimension工作在更高效和便捷的云操作环境中,并在日志分析方面采用最先进的大数据技术作为底层支撑。思想与技术的融合,让Dimension在第一时间洞察网络变化,并为用户推荐更专业的安全策略。在树形层级菜单的引导下,管理员和决策者都可拥有属于自己的数据报表,高效率的挖掘出埋在网络深处危险地带。另外,基于全球威胁地图的展现层设计和超过70种数据集合的报告,更可以让威胁探测的结果清晰可见,这包括动态的仪表盘、专业的指导意见、优秀客户的实践结果。
WatchGuard 中国区市场总监万熠表示:在我们与Slashdot网站共同发起的一份调研报告中显示,日志数据的成倍增长,让51%的安全专家已经无法在第一时间找出网络中可疑的应用,而工作在能见度极低的日志管理平台上,更不可能定位那些威胁企业核心机密的源头。这些都使得安全评估、威胁源头追踪,以及法规遵从工作都难以再从日志入手。而Dimension恰恰可以帮助用户在日志管理和威胁分析中实现大与快。
据了解,作为全球知名的网络及内容安全解决方案提供商,WatchGuard推出的实时化、可视性解决方案Dimension,与旗下的XTM统一化威胁管理平台形成了更先进的组合方案,并在市场上呈现了一系列的良好反馈。现在Dimension在VMware之外已经对Mircosoft Hyper-V等更多虚拟化平台提供了支撑,这也为WatchGuard2013年第4则季度创下了23%增长的财务业绩新高。
如今,以数据窃取威胁为代表的新一波攻击已经到来,特别是对于新近投入网络业务洪流的中国企业而言,专业网络安全人员的匮乏,就更需要专业的网络威胁防护系统进行补充,以消除安全运营成本不断攀升的难题。若要阻止危机爆发,企业需要以最简洁明了的方式对信息系统健康状况进行广泛的数据评估,这与采用随机样本分析的意义相差甚远。而来自Dimension国外成熟用户的热情反馈,充分展现了云和大数据技术在网络威胁管理中的价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28