
大数据推动管理的现代化转型_数据分析师
把大数据的手段和方法引入管理领域,是实现管理现代化的有效路径,也是大数据时代的必然要求。在广东省,伴随着经济的迅猛发展,地方税收纳税登记户从1994年60多万户增加到2011年的285多万户,地税收入从184亿元增加到4248亿元,而同期,地税系统干部人数仅增加了20%。海量数据的即时获取和精确分析成为摆在管理者面前的一道难题。广东省通过率先建设省级地税集中征管信息系统,使全省共用一套服务器、一套程序和一个网络。目前,广东省税收管理员系统的数据总量已达到53TB,承载了覆盖税收执法、税源管理、涉税提醒服务等100多项业务。下面以广东省地税系统为例,从6方面揭示大数据推动公共管理从传统向现代转型的趋势。
从粗放化管理向精细化管理转型。广东地税通过建立省级数据应用大集中平台,告别了靠手工操作和人海战术的粗放型管理模式,实现了税款自动入库、自动划解和实时监控,取得了税款的稳定快速增长。通过对海量数据的分析和比对,广东地税对每个行业、每家企业、每个税种实现了精细化分析和掌控。例如,房地产业和建筑安装业流动性大、中间环节复杂,难以监控,历来是征管难点。广东地税依托大数据平台,开发了建筑安装业和房地产行业税源控管系统。通过该系统,可实时获取房地产开发项目明细信息,包括土地使用权信息、建筑工程进度、房产销售进度、销售明细以及各阶段的税款缴纳情况等,实现了项目从产生到消亡的全过程监控。
从单兵作战型管理向协作共享型管理转型。过去,不同政府部门拥有自己的信息系统,但很多数据相互隔离,形成了一个个信息孤岛,大数据的一大应用就是要实现数据信息共享,最大限度地发挥数据的功效,为经济社会发展服务。广东地税借助大数据平台,积极推进第三方涉税信息共享,明确了28个部门共享涉税信息的内容和方式。目前,工商税务信息每天都进行实时交换,推动了地税机关在办证服务上的创新,从原来的限时办证发展到现在的即时办证,从原来填写100多项登记信息,升级到填写8项必要信息内容,甚至可以享受免填服务。
从柜台式管理向自助式全天候管理转型。广东地税根据纳税人类别、涉税业务类别、办理时段等信息,依托大数据平台,形成了服务大厅、网上办税、纳税热线、自助办税、短信服务等多种渠道并存的大服务格局。通过自助办税终端系统,纳税人可以不受区域和时间限制,自行完成代开小额发票、打印缴款凭证、清缴税费、申报缴纳车船税等凭证类税收业务。截至2012年10月,广东地税已在全省(深圳除外)向纳税人开放573台自助办税终端,24小时自助办税厅(点)63个,办理税收业务累计超过660万户次,日平均办理业务量超过1.3万户次,分担了办税服务大厅约14%的业务量。
从被动响应型管理向主动预见型管理转型。为更好地主动服务于纳税人,广东地税通过税收大数据平台,推出全省集中统一的短信服务,为673万纳税人提供短信订阅服务,有针对性地对目标群体提供了发票开具提醒、逾期未申报短信提醒、未到期未申报短信提醒等多项主动短信服务。借助于大数据平台,避免了轰炸式、无目的性的短信服务方式,实现了针对特定受众发送定制短信内容的精确式短信服务,提升了服务质量。经统计,2011年的短信服务量超过1800万条;2012年前10个月的短信服务量已超过5220万条。
从纸质文书管理向电子政务管理转型。目前,广东地税互联网电子税务局已基本建成,纳税人仅需短短5分钟,足不出户就能轻松办税。全省网报开户纳税人134.2万,开户率90.8%;电子报税的纳税户占纳税户总数的95%以上。广东省还在全国率先推行网络开具发票,不仅方便纳税人,还使税务机关能第一时间掌握每张发票的信息,实时与企业纳税申报数据比对分析,及时发现未缴、少缴税款的情况,保障了税款准确及时入库。网络发票的普及有效解决了假发票泛滥问题,大幅减少了用假发票报销的现象,被国家税务总局誉为“税收管理史上的颠覆性举措”。
从风险隐蔽型管理向风险防范型管理转型。广东地税坚持走科技防腐之路,开创了全国税务系统以信息化推进惩防体系建设的先河。依托大数据平台建立的惩防体系信息管理系统,对地税干部的税收执法和行政管理进行全程分析监控,有效防控了各类执法和廉政风险。对全省地税税收执法的监控预警数据从2008年刚上线时的每月近7000个,大幅回落到2012年的不到500个,下降了92%。国地税分设18年来,全系统违法违纪发案率基本控制在0.5‰以下的较低水平,没有发生重大违法违纪案件,省局机关未发生违法违纪案件。
精细化管理、协作共享型管理、自助式全天候管理、主动预见型管理、电子政务管理、风险防范型管理,这些关键词也许还无法完全概括出大数据赋予现代管理的种种前景,然而却有助于我们把握前进的方向。令人欣喜的是,由于现代管理具有信息化、标准化的特征,只要有一种好的模式被创造出来,就可以迅速在其他区域、其他部门予以复制和推广。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28