
“很多公司还在单纯的做第三方数据搜集、分析,以此判定包括年龄、性别等在内的上网人群特征,这种方式有很大的局限性。”悠易互通CEO周文彪近日接受21世纪经济报道记者专访时表示。
数字营销曾踏着互联网的浪潮极大冲击了传统的营销模式,即通过在第三方网站(比如新浪、搜狐等门户)布代码,搜集、分析用户行为,然后针对性投放广告,因此,被视为一种更加精准的推广营销模式。
但在大数据时代,这种模式面临的问题开始暴露。周文彪表示,根据浏览行为做数据分析是一个弱关系,不是强关系,悠易互通也曾做过三年尝试,但去年发现,单纯以第三方数据去分析,数据丰富度不够,想要得到一些用户的深度属性,难度很大,导致广告投放的精准度依然不高。
因此,今年悠易互通推出了“数据银行”,引入品牌商的第一方数据,并通过与第三方数据的匹配,形成新的数字营销模式。
数据银行的核心便是从单纯的对用户行为分析升级为对用户身份的认证,进而进行跟踪分析。同时,在多屏时代,基于身份认证和后端的大数据分析,可以实现跨屏营销。
数据银行思路
“对广告客户的第一方数据和第三方数据整合,是我们做数据银行要最先解决的问题。”悠易互通负责产品的副总裁蒋楠表示。
周文彪介绍说,数据银行的大数据来源主要包括第一方数据(客户网站上布代码搜集数据)、自己的数据(去全网布代码搜集分析的数据)、第三方数据(比如百度淘宝、新浪等)、垂直领域的一些数据供应商。
据了解,悠易互通的数据银行模式首先是将代码布到广告客户的官网和APP上,进行数据搜集分析,比如有1000万个用户点击进入,首先要分析有多少人只是到达首页,多少人进入到产品页,又有多少人转化购买了产品。
周文彪表示,第一方数据非常精准,因为浏览的用户和品牌的关联度很高,不只看过广告,而是有足够的停留时间,这样分析的结果比在第三方平台上分析的数据准确很多。但也有局限性,一般的品牌商自有数据量比较小,对于营销远远不够,所以要结合第三方数据。
在两类数据结合的过程中,悠易互通加入了ID身份认证,既可以激活品牌商的原有客户,同时以此又可以带来增量用户,并形成循环。
周文彪以一家汽车品牌商为例,该品牌商已拥有500万的CRM数据,包括名字、住址、手机号、身份证号以及保养情况等,但最大的问题是这个数据库没有被充分运用起来,一直处于离线状态,无法跟踪这些用户平时在线干什么。
悠易互通则通过对这500万客户的手机号加密,然后去自己的数据库中(同样积累了大量加密手机号)匹配,一旦确定为同一个用户,便会给该用户赋予一个悠易互通的ID。当该ID在其它网站浏览时,便可实时跟踪,并结合CRM离线数据库,了解用户的需求,比如该保养或换机油了,精确地推送给用户。周文彪称,通过这种方式已为该品牌商激活300万用户。
而对于增量用户,周文彪表示,因为这300万用户的全网行为都可分析,便可以总结出这些用户的在线行为特征,然后再去第三方数据库中寻找一批行为特征相似的人群去投放汽车广告,比如面向3000万潜在用户投放,如果有500万用户到4S店试驾或购车,又可以进入数据库,“用300万现有客户去找潜在的客户,这是一个很有效的方法”。
由此,围绕数据银行形成“第一方数据库挖掘——匹配ID——跟踪全网行为——总结特性——寻找类似用户精准投放广告——新数据进入第一方数据库”的循环模式。
跨屏营销场景
百度展示广告事业部产品总监沈昭阳在悠易互通一次发布会上公布的一组数据显示,中国65%的用户拥有电脑、平板、手机甚至更多的设备,他们的行为大量分散在各种设备上。同时他称,PC流量的自然增长速度无法承载产品所需要的增长速度,PC不可能做到流量的翻倍增长,因此只从PC深挖,已经看到了局限性。
多屏时代的用户行为变化必将激发出新的营销模式。周文彪表示,不同的终端拥有不同的ID,以前会认为不同的终端设备后面是不同的人,但在多屏时代,不同设备背后可能是一个人,如果还按照以前的模式投放广告,势必会造成资源浪费,跨屏营销就是要确定用户正在使用哪个屏幕,并且以差异化的方式将相关产品推送到正在使用的屏幕上。
但要实现跨屏营销,背后依然需要大数据的支撑。周文彪称,今年对一群用户的行为数据分析发现,同一个人,阅读行为发生在手机上的频次远远高于PC,而在对汽车、家电信息的获取上,PC端的使用量远远高于移动端。传统模式下,汽车品牌商分析移动端数据时,就会认为该用户是一个阅读用户,而不是一个汽车相关用户,就忽略掉了,但这个人可能就是一个汽车发烧友,只是在其它屏幕上进行相关行为。
解决这一问题,依然是通过统一ID的方式,即通过ID账号实时跟踪用户行为,形成大数据,以此综合分析判断使用多屏的用户属性。悠易互通是百度移动流量仅有的两大DSP合作方之一,百度旗下的音乐、地图等应用均在PC端和移动端实行统一ID账号,悠易互通在与其流量交易平台对接时,该ID信息进入悠易互通平台。
但从目前来看,并非每家大平台都开放这部分数据,因此周文彪称,另一种方式是通过IP号段,在同一IP号段下,即使不同的屏幕也可判断可能是一个人,成功率没有第一种准确,但也能达到60%到70%,在互联网营销领域,这个水平已经很高了。
周文彪称,跨屏时代的数字营销,最大的难点还是技术,对大数据分析能力要求非常高。CDA注册数据分析师协会会员是来自学界、实务界,国内大陆、台湾及国外数据分析和数据挖掘相关领域顶尖的教授、专家、工程师及企业高端人才,名师荟萃,学术浓厚,技术前沿,代表了国内数据分析研究领域的最高水平。CDA数据分析师的就业前景可选择于通讯、医疗、银行、证券、保险、制造、商业、市场研究、科研、教育等多个行业和领域。,根据三个不同的等级胜任不同的数据分析工作任务。文章来源:CDA数据分析师培训官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28