京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析的最终目的是实现帮助企业实现业务增长,在现阶段,原来的以生产为中心、以销售产品为目的的市场战略已经逐步被以客户为中心、以服务为目的的市场战略所取代。这也就意味着,那个企业能更好地掌握客户的需求趋势,加强与客户的关系,更有效地对客户资源进行挖掘和管理,那么这个企业就能在市场竞争中处于优势地位。细分客户群是企业向客户提供个性化体验的关键。客户细分向企业展示出相关客户的行为、习惯与偏好等信息,企业可以根据不同的客户群体提供量身定制的营销活动,从而改善客户体验。下面,就跟小编一起来看如何进行有效的客户细分吧。
一、客户细分的具体步骤
1.我们需要明确客户细分的目标。客户细分目标不同,方法也会有极大的差异性。通常客户细分目标一般包括:促进商品销售、提升转化率、设计针对性的产品与服务、改进服务体验、优化推广成本与投入效果等。
2.根据客户细分地目标确定我们需要的资源和方法。在资源和方法方面,我们经常会因为企业本身资源条件的限制以及数据分析方法的技术性问题受到一定程度的阻碍。
3.根据企业实际资源限制来选择适合的客户细分方法。结合企业的实际需求与限制条件,找到可行的,有效的方法,这也是开始客户细分探索的基础。
4.应用企业现有的有效数据。虽然企业现有的数据不一定是完备的,有效的,但是这些数据本身,可能也需要更为深入的处理以适应细分的方法。
5.分析细分指标的稳定性。一般来说,有效的客户细分是通过分层的多维指标交叉而获得的,但这并不是说越复杂越好,我们需要找到真正稳定和显性的细分指标。
6.描述细分客户群的特征。通常要求细分后的客户群体不仅能够清晰的描述,还可以应用可靠的方法进行识别。
7.将客户细分看成过程而不是结果。客户细分是个学习的过程,随着时代的进步、市场的变化,客户也会随之而成长,因此,我们需要不断调整和优化原本的客户细分。
二、客户细分需要注意的问题
1.客户细分指标不正确
.客户细分要求根据客户的属性,行为,需求,偏好以及价值等因素综合进行分类,我们在客户细分过程中,不能只考虑单一指标。例如,按照客户资产进行细分,有钱的就是优质客户,没钱的就不是优质客户。或者按照自然时间细分,老客户就是好客户,而新客户就只给很少的优惠等等。
2.盲目复制他人细分
每个行业的情况都大不相同,每个企业也都有自己独特的经营模式和思路,那么这就意味着实现客户价值的能力和效率也会不同。加入我们直接照搬照抄其他企业的客户细分方案,就有可能会花费更高昂的成本去服务客户,甚至还可能导致相反的结果。我们在进行客户细分研究的时候,必须考量实际企业客户的具体情况、细分客户群服务能力等指标,审慎地提交客户细分方案。
3.为细分而细分,细分客户群后没有具体的行动方案
有些企业细分客户群体后,并没有采取针对化的措施,对不同的客户细分群体实施不同的经营活动方案,客户细分只流于表面形式。企业做客户细分的最终目的是发展和盈利。在客户细分后,必须要有相对应的营销举措,才能将客户细分的价值发挥出来,实现业务的增长。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01