京公网安备 11010802034615号
经营许可证编号:京B2-20210330
对于企业来说,为了让业务做得更好,必须知道自己的用户都有哪些特征,例如用户的年龄,消费习惯等等,这时候就需要构建企业自己的用户画像了。而构建用户画像的基础就先给我们的用户打上标签。
一、用户画像与用户标签
1.用户画像
用户画像,也就是用户信息标签化,通过对用户的社会属性、消费习惯、偏好特征等各个维度数据的收集,刻画出用户或者商品的特征属性,并对这些特征属性进行分析、统计,进而挖掘出潜在价值信息,抽象出用户的信息全貌。
2.用户标签
简单点来说,用户标签,就是指对用户某个维度特征的描述。
3.用户画像的基础工作就是给用户打“标签”,标签通常都是人为规定的高度精炼的特征标识,比如性别、年龄、职业、地域、爱好等,之后将用户的所有标签综合起来,基本上该用户的立体“画像”就能勾勒出来了。
二、 用户画像标签类型
根据对用户打标签的方式,可以将用户标签分为以下三个类型
1. 统计类标签
这类标签是用户画像的基础,也是最常见的标签类型,就是我们通常所说的,性别、年龄、城市、活跃度等信息,这些数据我们可以从用户的注册、访问以及消费数据中统计出来。
2. 规则类标签
这类标签是根据用户行和确定的规则而产生。例如,网站上“活跃”用户的定义为“近一个月交易次数≥2”。在构建用户画像的实际过程中,这种规则类标签是由运营人员和数据人员共同协商来确定的。
3. 机器学习挖掘类标签
这类标签是由机器学习挖掘产生的,可以用来预测判断用户的某些属性或行为。
一般企业在构建用户画像的实际操作过程中,统计类和规则类的标签就能满足应用需求,机器学习挖掘类标签多通常被用于预测场景。
三、用户画像标签的应用场景
1.辅助业务分析。通常情况下,业务人员能够通过用户标签快速获得用户的特征信息,从而获得业务灵感。
2.丰富数据分析维度。通用户标签,我们能够对业务数据进行更深层的对比分析,从而辅助业务落地。
3.将用户群体细分,实现精细化运营,针对不同的细分客户群,采取差异化的运营和营销方法进行驱动和挽回,达到事半功倍的效果。
4.作为数据产品的基础,像是广告系统、个性化推荐系统、CRM 管理工作等。自动化的业务系统能够将用户标签的价值发挥到最大。
四、怎样给用户画像
1.收集用户数据。搜集用户所有相关数据,包括静态数据,例如性别,职业,地域等;以及动态数据,包括用户浏览的网页、商品,发表的评论等。
2.通过上述数据,为用户贴上相应的标签,标签代表着某一用户对该内容是否有兴趣、偏好、需求等,指数代表着某一用户对该内容的兴趣、需求、购买欲程度等;
3.利用用户标签标签建模,主要包括人物、时间、地点这三个要素,通俗点来说,就是什么用户在什么时间什么地点做了什么事。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01