京公网安备 11010802034615号
经营许可证编号:京B2-20210330
机器学习中,我们最常遇到的就是无监督,有监督,半监督了。无监督和有监督的区别,小编之前跟大家分享过,今天跟大家分享的是无监督机器学习中常见的聚类算法,希望对大家无监督学习有所帮助。
一、基本概念
1.无监督学习:
无监督学习是机器学习的一种方法,根据类别未知(没有被标记)的训练样本解决模式识别中的各种问题。无监督学习应用主要包含:聚类分析、关系规则、维度缩减。
2.聚类:
无监督学习里典型例子是聚类。聚类是把相似的对象通过静态分类的方法分成不同的组别或者更多的子集,这样让在同一个子集中的成员对象都有相似的一些属性,常见的包括在坐标系中更加短的空间距离等。
最常见的无监督聚类算法:
K均值聚类
分层聚类
基于密度的扫描聚类(DBSCAN)
二、无监督聚类算法--K均值聚类
K均值聚类 是我们最常用的基于欧式距离的聚类算法,它是数值的、非监督的、非确定的、迭代的,该算法旨在最小化一个目标函数——误差平方函数(所有的观测点与其中心点的距离之和),其认为两个目标的距离越近,相似度越大,由于具有出色的速度和良好的可扩展性,K均值聚类算得上是最著名的聚类方法。
1.K均值中最常用的距离是欧氏距离平方。m维空间中两点x和y之间的距离的示例是:
这里,j是采样点x和y的第j维(或特征列)。
集群惯性是聚类上下文中给出的平方误差之和的名称,表示如下:
其中μ(j)是簇j的质心,并且如果样本x(i)在簇j中则w(i,j)是1.否则是0.
K均值可以理解为试图最小化群集惯性因子的算法。
2.具体算法
(1)选择k值,即我们想要查找的聚类数量。
(2)算法将随机选择每个聚类的质心。
(3)将每个数据点分配给最近的质心(使用欧氏距离)。
(4)计算群集惯性。
(5)将计算新的质心作为属于上一步的质心的点的平均值。换句话说,通过计算数据点到每个簇中心的最小二次误差,将中心移向该点。
(6)返回第3步。
二、无监督聚类算法--分层聚类
1.分层聚类是基于prototyope的聚类算法的替代方案。分层聚类的主要优点是不需要指定聚类的数量,它会自己找到它。此外,它还可以绘制树状图。树状图是二元分层聚类的可视化。
在底部融合的观察是相似的,而在顶部的观察是完全不同的。对于树状图,基于垂直轴的位置而不是水平轴的位置进行结算。
2.分层聚类的类型
分层聚类有两种方法:集聚和分裂。
分裂:这种方法首先将所有数据点放入一个集群中。 然后,它将迭代地将簇分割成较小的簇,直到它们中的每一个仅包含一个样本。
集聚:这种方法从每个样本作为不同的集群开始,然后将它们彼此靠近,直到只有一个集群。
3.分层聚类优缺点
分层聚类的优点;
(1)由此产生的层次结构表示可以提供非常丰富的信息。
(2)树状图提供了一种有趣且信息丰富的可视化方式。
(3)当数据集包含真正的层次关系时,它们特别强大。
分层聚类的缺点:
(1)分层聚类对异常值非常敏感,并且在其存在的情况下,模型性能显着降低。
(2)从计算上讲,分层聚类非常昂贵。
三、无监督聚类算法--DBSCAN 聚类
DBSCAN(带噪声的基于密度的空间聚类方法)是一种流行的聚类算法,它被用来在预测分析中替代 K 均值算法。它并不要求输入簇的个数才能运行。但是,你需要对其他两个参数进行调优。
优缺点:
1.优点
①不需要指定簇的个数;
②可以对任意形状的稠密数据集进行聚类,相对的,K-Means之类的聚类算法一般只适用于凸数据集;
③擅长找到离群点(检测任务);
④两个参数ε\varepsilonε和minPts就够了;
⑤聚类结果没有偏倚,相对的,K-Means之类的聚类算法初始值对聚类结果有很大影响。
2.缺点
①高维数据有些困难;
②Sklearn中效率很慢(数据削减策略);
③如果样本集的密度不均匀、聚类间距差相差很大时,聚类质量较差,这时用DBSCAN聚类一般不适合;
④调参相对于传统的K-Means之类的聚类算法稍复杂,主要需要对距离阈值ε\varepsilonε,邻域样本数阈值MinPts联合调参,不同的参数组合对最后的聚类效果有较大影响。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16