京公网安备 11010802034615号
经营许可证编号:京B2-20210330
把近朱者赤,近墨者黑这一思想运用到机器学习中会产生什么?当然是KNN最邻近算法啦!KNN(全称K-Nearest Neighbor)最邻近分类算法是数据挖掘分类算法中最简单的算法之一,白话解释一下就是:由你的邻居来推断出你的类别。那么KNN算法的原理是什么,如何实现?一起与小编来看下面的内容吧。
一、KNN最邻近算法概念
KNN最邻近算法,是著名的模式识别统计学方法之一,在机器学习分类算法中占有很高的地位。KNN最邻近算法在理论上比较成熟,不仅是最简单的机器学习算法之一,而且也是基于实例的学习方法中最基本的,最好的文本分类算法之一。
KNN最邻近算法基本做法是:给定测试实例,基于某种距离度量找出训练集中与其最靠近的k个实例点,然后基于这k个最近邻的信息来进行预测。
KNN最邻近算法不具有显式的学习过程,事实上,它是懒惰学习(lazy learning)的著名代表,此类学习技术在训练阶段仅仅是把样本保存起来,训练时间开销为零,待收到测试样本后再进行处理。
二、KNN最邻近算法三要素
KNN最邻近算法三要素为:距离度量、k值的选择及分类决策规则。根据选择的距离度量(如曼哈顿距离或欧氏距离),可计算测试实例与训练集中的每个实例点的距离,根据k值选择k个最近邻点,最后根据分类决策规则将测试实例分类。
1.距离度量
特征空间中的两个实例点的距离是两个实例点相似程度的反映。K近邻法的特征空间一般是n维实数向量空间Rn。使用的距离是欧氏距离,但也可以是其他距离,如更一般的Lp距离或Minkowski距离。
这里p≥1.
当p=1时,称为曼哈顿距离(Manhattan distance),即
当p=2时,称为欧氏距离(Euclidean distance),即
2.k值的选择
k值的选择会对KNN最邻近算法的结果产生重大影响。在应用中,k值一般取一个比较小的数值,通常采用交叉验证法来选取最优的k值。
3.分类决策规则
KNN最邻近算法中的分类决策规则通常是多数表决,即由输入实例的k个邻近的训练实例中的多数类,决定输入实例的类。
三、KNN最邻近算法优缺点
1.优点
①简单,易于理解,易于实现,无需参数估计,无需训练;
②精度高,对异常值不敏感(个别噪音数据对结果的影响不是很大);
③适合对稀有事件进行分类;
④特别适合于多分类问题(multi-modal,对象具有多个类别标签),KNN要比SVM表现要好.
2.缺点
①对测试样本分类时的计算量大,空间开销大,因为对每一个待分类的文本都要计算它到全体已知样本的距离,才能求得它的K个最近邻点。目前常用的解决方法是事先对已知样本点进行剪辑,事先去除对分类作用不大的样本;
②可解释性差,无法给出决策树那样的规则;
③最大的缺点是当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。该算法只计算“最近的”邻居样本,某一类的样本数量很大,那么或者这类样本并不接近目标样本,或者这类样本很靠近目标样本。无论怎样,数量并不能影响运行结果。可以采用权值的方法(和该样本距离小的邻居权值大)来改进;
④消极学习方法。
四、KNN算法实现
主要有以下三个步骤:
1. 算距离:给定待分类样本,计算它与已分类样本中的每个样本的距离;
2. 找邻居:圈定与待分类样本距离最近的K个已分类样本,作为待分类样本的近邻;
3. 做分类:根据这K个近邻中的大部分样本所属的类别来决定待分类样本该属于哪个分类;
python示例
import math import csv import operator import random import numpy as np from sklearn.datasets import make_blobs #Python version 3.6.5 # 生成样本数据集 samples(样本数量) features(特征向量的维度) centers(类别个数) def createDataSet(samples=100, features=2, centers=2): return make_blobs(n_samples=samples, n_features=features, centers=centers, cluster_std=1.0, random_state=8) # 加载鸢尾花卉数据集 filename(数据集文件存放路径) def loadIrisDataset(filename): with open(filename, 'rt') as csvfile: lines = csv.reader(csvfile) dataset = list(lines) for x in range(len(dataset)): for y in range(4): dataset[x][y] = float(dataset[x][y]) return dataset # 拆分数据集 dataset(要拆分的数据集) split(训练集所占比例) trainingSet(训练集) testSet(测试集) def splitDataSet(dataSet, split, trainingSet=[], testSet=[]): for x in range(len(dataSet)): if random.random() <= split: trainingSet.append(dataSet[x]) else: testSet.append(dataSet[x]) # 计算欧氏距离 def euclideanDistance(instance1, instance2, length): distance = 0 for x in range(length): distance += pow((instance1[x] - instance2[x]), 2) return math.sqrt(distance) # 选取距离最近的K个实例 def getNeighbors(trainingSet, testInstance, k): distances = [] length = len(testInstance) - 1 for x in range(len(trainingSet)): dist = euclideanDistance(testInstance, trainingSet[x], length) distances.append((trainingSet[x], dist)) distances.sort(key=operator.itemgetter(1)) neighbors = [] for x in range(k): neighbors.append(distances[x][0]) return neighbors # 获取距离最近的K个实例中占比例较大的分类 def getResponse(neighbors): classVotes = {} for x in range(len(neighbors)): response = neighbors[x][-1] if response in classVotes: classVotes[response] += 1 else: classVotes[response] = 1 sortedVotes = sorted(classVotes.items(), key=operator.itemgetter(1), reverse=True) return sortedVotes[0][0] # 计算准确率 def getAccuracy(testSet, predictions): correct = 0 for x in range(len(testSet)): if testSet[x][-1] == predictions[x]: correct += 1 return (correct / float(len(testSet))) * 100.0 def main(): # 使用自定义创建的数据集进行分类 # x,y = createDataSet(features=2) # dataSet= np.c_[x,y] # 使用鸢尾花卉数据集进行分类 dataSet = loadIrisDataset(r'C:\DevTolls\eclipse-pureh2b\python\DeepLearning\KNN\iris_dataset.txt') print(dataSet) trainingSet = [] testSet = [] splitDataSet(dataSet, 0.75, trainingSet, testSet) print('Train set:' + repr(len(trainingSet))) print('Test set:' + repr(len(testSet))) predictions = [] k = 7 for x in range(len(testSet)): neighbors = getNeighbors(trainingSet, testSet[x], k) result = getResponse(neighbors) predictions.append(result) print('>predicted=' + repr(result) + ',actual=' + repr(testSet[x][-1])) accuracy = getAccuracy(testSet, predictions) print('Accuracy: ' + repr(accuracy) + '%') main()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27