
Kmeans算法,又叫做K均值聚类算法,可以说是无监督聚类算法中最具代表性,最经典的聚类算法了,这一算法的主要作用是将相似的样本自动归到一个类别中。小编特意整理了这一经典聚类算法的基本原理供大家参考,希望对大家有所帮助。
一、首先来看一下Kmeans算法的效果
#通过简单的例子来直接查看K均值聚类的效果 from sklearn.cluster import KMeans import matplotlib.pyplot as plt import numpy as np %matplotlib inline #聚类前 X = np.random.rand(100,2) plt.scatter(X[:,0],X[:,1], marker='o')
#聚类后 kmeans = KMeans(n_clusters=4).fit(X) label_pred = kmeans.labels_ plt.scatter(X[:,0],X[:,1],c=label_pred) plt.show()
二、Kmeans算法基本原理
假定给定数据样本X,包含了n个对象
其中每个对象都具有m个维度的属性。Kmeans算法的目标是将n个对象依据对象间的相似性聚集到指定的k个类簇中,每个对象属于且仅属于一个其到类簇中心距离最小的类簇中。对于Kmeans,首先需要初始化k个聚类中心{C1.C2.C3....,Ck},1<k≤n,然后通过计算每一个对象到每一个聚类中心的欧式距离,如下式所示
依次比较每一个对象到每一个聚类中心的距离,将对象分配到距离最近的聚类中心的类簇中,得到k个类簇{S1.S2.S3....,Sk}
Kmeans算法用中心定义了类簇的原型,类簇中心就是类簇内所有对象在各个维度的均值,其计算公式如下
代码实现
Kmeans算法 % 输入: % data 输入的不带分类标号的数据 % K 数据一共分多少类 % iniCentriods 自行指定初始聚类中心 % iterations 迭代次数 % 输出: % Idx 返回的分类标号 % centroids 每一类的中心 % Distance 类内总距离 function [Idx,centroids,Distance]=KMeans(data,K,iniCentriods,iterations) [numOfData,numOfAttr]=size(data); % numOfData是数据个数,numOfAttr是数据维数 centroids=iniCentriods; %% 迭代 for iter=1:iterations pre_centroids=centroids;% 上一次求得的中心位置 tags=zeros(numOfData,K); %% 寻找最近中心,更新中心 for i=1:numOfData D=zeros(1,K);% 每个数据点与每个聚类中心的标准差 Dist=D; % 计算每个点到每个中心点的标准差 for j=1:K Dist(j)=norm(data(i,:)-centroids(j,:),2); end [minDistance,index]=min(Dist);% 寻找距离最小的类别索引 tags(i,index)=1;% 标记最小距离所处的位置(类别) end %% 取均值更新聚类中心点 for i=1:K if sum(tags(:,i))~=0 % 未出现空类,计算均值作为下一聚类中心 for j=1:numOfAttr centroids(i,j)=sum(tags(:,i).*data(:,j))/sum(tags(:,i)); end else % 如果出现空类,从数据集中随机选中一个点作为中心 randidx = randperm(size(data, 1)); centroids(i,:) = data(randidx(1),:); tags(randidx,:)=0; tags(randidx,i)=1; end end if sum(norm(pre_centroids-centroids,2))<0.001 % 不断迭代直到位置不再变化 break; end end %% 计算输出结果 Distance=zeros(numOfData,1); Idx=zeros(numOfData,1); for i=1:numOfData D=zeros(1,K);% 每个数据点与每个聚类中心的标准差 Dist=D; % 计算每个点到每个中心点的标准差 for j=1:K Dist(j)=norm(data(i,:)-centroids(j,:),2); end [distance,idx]=min(Dist);% 寻找距离最小的类别索引 distance=Dist(idx); Distance(i)=distance; Idx(i)=idx; end Distance=sum(Distance,1);% 计算类内总距离 end
二、Kmeans的优化算法
1.二分K-means算法
二分KMeans特点:解决K-Means算法对初始簇心比较敏感的问题,二分K-Means算法是一种弱化初 始质心的一种算法
二分Kmeans 具体思路步骤:
(1) 将所有样本数据放回到一个蔟队列中
(2) 队列中的一个蔟进行 k = 2 的KMeans算法聚类形成两个子蔟,将他们放回到蔟队列中
(3)重复这个步骤,直到中止条件达到(主要是聚簇数量)
选取队列蔟二划分的条件:
(1)选取蔟距离平方和SSE 最大的蔟进行二划分(优先)。
(2)选取样本较多的蔟进行二划分。
2.Kmeans++算法
K-Means++算法就是对K-Means随机初始化质心的方法的优化。K-Means++的对于初始化质心的优化策略也很简单,如下:
(1)从输入的数据点集合中随机选择一个点作为第一个聚类中心μ1
(2)
(3)选择一个新的数据点作为新的聚类中心,选择的原则是:D(x)较大的点,被选取作为聚类中心的概率较大
(4)重复2和3直到选择出k个聚类质心
(5)利用这k个质心来作为初始化质心去运行标准的K-Means算法
简单的来说, Kmeans++ 就是选择离已选中心点最远的点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18