
Affinity Propogation最初是由Brendan Frey 和 Delbert Dueck于2007年在Science上提出的。相比其它的层次聚类算法,Affinity Propogation算法不需要预先指定聚类个数。
Affinity Propogation算法的原理可以简单的概括为:每一个数据点都会给其它的多有点发送信息,告知其它所有点每个目标对发送者(sender)的相对吸引力的目标值(target)。
随后,鉴于从所有其它sender收到信息的“attractiveness”,每个target所有sender一个回复,以告知与sender相联系的每一个sender的可用性。sender会给target回复相关信息,以告知每一个target对sender修正的相对“attractiveness”(基于从所有target收到的关于可用性的信息)。信息传递的整个过程直到达成一致才会停止。
一旦sender与某个target相联系,这个target就会称为该点(sender)的“典型代表(exemplar)”。所有被相同exemplar标记的点都被放置在一个聚类中。
假定一个如下的数据集。每一个参与者代表一个五维空间的数据点。
相似性矩阵(C)
除了在对角线上的元素外,其它的元素是负的均方误差作为两个数据间的相似值。
计算公式如下:c(i, j) = -||X_i-X_y||^2c(i,j)=−∣∣Xi−Xy∣∣2以Alice和Bob为例,两者间的相似性计算过程如下:(3-4)^2+(4-3)^2+(3-5)^2+(2-1)^2+(1-1)^2 = 7(3−4)2+(4−3)2+(3−5)2+(2−1)2+(1−1)2=7。
因此,Alice与Bob之间的相似值为-7。
相似性值的计算边界出现在Bob和Edna间:(4-1)^2+(3-1)^2+(5-3)^2+(1-2)^2+(1-3)^2 = 22(4−1)2+(3−1)2+(5−3)2+(1−2)2+(1−3)2=22Bob和Edna之间的相似值为-22。
通过逐步的计算,最后得到的结果如下:
一般对角线上的元素取相似值中较小的数,在本例中取值为-22,因此,得到的相似性矩阵如下:
Responsibility Matrix ®
这里的responsibility matrix 是中间的过度步骤。通过使用如下的公式计算responsibility matrix:r(i, k ) \leftarrow s(i, k)- max_{k^{'} such\ that\ k^{'} \not= \ k} \{a(i, k^{'})+s(i, k^{'})\},r(i,k)←s(i,k)−maxk′such that k′= k{a(i,k′)+s(i,k′)},其中,i表示协同矩阵的行,k表示列的关联矩阵。
例如,r(Alice, Bob)r(Alice,Bob)的值为-1, 首先提取similarity matrix中c(Alice, Bob)c(Alice,Bob)的值为-7, 减去similarity matrix中Alice行的最大值为-6,因此,得到r(Alice, Bob)=-1r(Alice,Bob)=−1。
取值的边界为r(Cary, Doug)r(Cary,Doug),其计算如下:
r(Cary, Doug) = -18-(-6)=-12r(Cary,Doug)=−18−(−6)=−12
根据上述公式计算得到的最终结果如下图所示:
Availability Matrix (a)
Availability Matrix的初始值为矩阵中的所有元素均为0。
首先,计算对角线上的元素值:a(k,k) \leftarrow \sum_{i^{'}such \ that \ i^{'} \not= k} max\{0, r\{i^{'}, k\}\},a(k,k)←i′such that i′=k∑max{0,r{i′,k}},其中,i表示协同矩阵的行,k表示协同矩阵的列。
实际上,上面的公式只告诉你沿着列,计算所有行与0比较的最大值(除列序与行序相等时的情况除外)。
例如,a(Alice, Alice)a(Alice,Alice)的计算如下:a(Alice, Alice) = 10+11+0+0 = 21a(Alice,Alice)=10+11+0+0=21
其次,计算非对角线上的元素值,分别以a(Alice, Cary)a(Alice,Cary)和a(Doug, Edna)a(Doug,Edna)为例,其计算过程如下所示:
a(Alice, Cary) = 1+0+0+0 = 1 \\ a(Doug, Edna)
= 0+0+0+9 = 9a(Alice,Cary)
=1+0+0+0=1a(Doug,Edna)
=0+0+0+9=9
以下公式是用于更新Availability Matrix,其公式如下:a(i, k) \leftarrow min\{0, r(k,k)+\sum_{i^{'} such \ that \ i^{'} \notin \{i, k\}} max{\{0, r(i^{'}, k)}\}\}a(i,k)←min{0,r(k,k)+i′such that i′∈/{i,k}∑max{0,r(i′,k)}}
当你想要更新a(Alice, Bob)a(Alice,Bob)的值时,其计算过程如下:a(Doug, Bob) = min\{{0,(-15)+0+0+0}\}=-15a(Doug,Bob)=min{0,(−15)+0+0+0}=−15最后得到的结果如下表所示:
Criterion Matrix ©
在得到上面的availability matrix后,将availability matrix和responsibility matrix的对应元素相加,便可得到criterion matrix。
其计算公式如下:c(i, k) \leftarrow r(i,k)+a(i,k).c(i,k)←r(i,k)+a(i,k).最后得到的criterion matrix的结果如下:
以上便是Affinity Propogation算法的计算过程,这是我见过最浅显易懂的讲解了,详见原文。
代码示例如下:
首先,导入相关库:
import numpy as np from matplotlib import pyplot as plt import seaborn as sns sns.set() from sklearn.datasets.samples_generator import make_blobs from sklearn.cluster import AffinityPropagation
使用scikit-learn生成需要的数据集,详见如下:
X, clusters = make_blobs(n_samples=300, centers=4, cluster_std=0.60, random_state=0) plt.scatter(X[:,0], X[:,1], alpha=0.7, edgecolors='b')
训练模型(因为是无监督算法,因此不需要拆分训练集和测试集):
af = AffinityPropagation(preference=-50) clustering = af.fit(X)
最后,将不同聚类的点可视化:
plt.scatter(X[:,0], X[:,1], c=clustering.labels_, cmap='rainbow', alpha=0.7, edgecolors='b')
算法使用场景:
Affinity Propagation是一个无监督的机器学习算法,它尤其适用于那些不知道最佳聚类数情况的算法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17