
Numpy基础数据结构
import numpy as np
ar = np.array([[1,2,3], [3,4,6], [4,5,7]]) # 二维数组 print(ar) print(type(ar)) ar
[[1 2 3] [3 4 6] [4 5 7]]numpy.ndarray'=""> array([[1, 2, 3], [3, 4, 6], [4, 5, 7]])
ar = np.array([[1,2,3], [3,4,6], [4,5,7]]) print(ar.ndim) # 输出数组维度个数(描述这个数组是几维的) print(ar.shape) # 输出数组维度形状 print(ar.size) # 数组元素的总个数 print(ar.dtype) # 数组的元素类型
2 (3, 3) 9 int32
创建数组
# 方式1 列表创建 ar1 = np.array([0,1,2,3,4,5,6,7,8,9]) print(ar1)
[0 1 2 3 4 5 6 7 8 9]
# 方式2 生成器创建 ar2 = np.array(range(10)) print(ar2)
[0 1 2 3 4 5 6 7 8 9]
# 方式3 arange类似range ar3 = np.arange(10) # 返回0-9 整型 print(ar3) print("") ar3 = np.arange(10.0) # 返回0.0-9.0 浮点型 print(ar3) print("") ar3 = np.arange(5, 11) # 返回5-11之间的整型 不包括11 print(ar3) print("") ar3 = np.arange(5,11,2) # 2代表步长 print(ar3)
[0 1 2 3 4 5 6 7 8 9] [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.] [ 5 6 7 8 9 10] [5 7 9]
# 方式4 随机创建 范围是 0-1 ar4 = np.random.rand(10) # 随机生成数值范围是 0-1 并且有10个元素的一维数组 print(ar4) print(ar4.ndim) # 维度个数(告诉你这个数组是几维的)
[0.20490144 0.89930216 0.57403933 0.8923752 0.71947406 0.91049224 0.55663805 0.84965526 0.19433663 0.39087672] 1
# 方式5 均匀间隔创建 # linspace() 返回有num个元素的数组 这num个元素是在10-20上(默认包含结尾)有均匀间隔的元素 ar6 = np.linspace(10, 20, num=20) # 10 11 12 13 14 15 16 17 18 19 20 print(ar6) print("") ar6 = np.linspace(10, 20, num=21) # 如果想按0.5来均等分的话num就要有21个 可以通过数个数来验证一下 print(ar6) print("") ar6 = np.linspace(10, 20, num=21, endpoint=False) # endpoint=False 表示不包括结尾 print(ar6) print("") ar6 = np.linspace(10, 20, num=20, endpoint=False) print(ar6) print("") ar6 = np.linspace(10, 20, num=20, endpoint=False, retstep=True) # 返回的一个元组并显示步长 retstep=True显示步长 print(ar6) print("") print(type(ar6)) print("") print(ar6[0]) # 取出数组 print(ar6[1]) # 取出数组的步长
[10. 10.52631579 11.05263158 11.57894737 12.10526316 12.63157895 13.15789474 13.68421053 14.21052632 14.73684211 15.26315789 15.78947368 16.31578947 16.84210526 17.36842105 17.89473684 18.42105263 18.94736842 19.47368421 20. ] [10. 10.5 11. 11.5 12. 12.5 13. 13.5 14. 14.5 15. 15.5 16. 16.5 17. 17.5 18. 18.5 19. 19.5 20. ] [10. 10.47619048 10.95238095 11.42857143 11.9047619 12.38095238 12.85714286 13.33333333 13.80952381 14.28571429 14.76190476 15.23809524 15.71428571 16.19047619 16.66666667 17.14285714 17.61904762 18.0952381 18.57142857 19.04761905 19.52380952] [10. 10.5 11. 11.5 12. 12.5 13. 13.5 14. 14.5 15. 15.5 16. 16.5 17. 17.5 18. 18.5 19. 19.5] (array([10. , 10.5, 11. , 11.5, 12. , 12.5, 13. , 13.5, 14. , 14.5, 15. , 15.5, 16. , 16.5, 17. , 17.5, 18. , 18.5, 19. , 19.5]), 0.5)[10. 10.5 11. 11.5 12. 12.5 13. 13.5 14. 14.5 15. 15.5 16. 16.5 17. 17.5 18. 18.5 19. 19.5] 0.5
# 创建元素全为0的数组 # zeros(shape, dtype=float, order='C') 默认为浮点型 ar7 = np.zeros(10) print(ar7) print(ar7.ndim) print("") ar7 = np.zeros((2,5)) print(ar7) print(ar7.ndim) print("") ar7 = np.zeros((2,5), dtype=int) print(ar7)
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] 1 [[0. 0. 0. 0. 0.] [0. 0. 0. 0. 0.]] 2 [[0 0 0 0 0] [0 0 0 0 0]]
# zeros_likes表示仿造arr创建一个全为0的数组 ar8 = np.array(range(10)) print(ar8)
[0 1 2 3 4 5 6 7 8 9]
# zeros_likes表示仿造ar8创建一个全为0的数组 ar8 = np.array([list(range(10)), list(range(10,20))]) print(ar8) print("") arr = np.zeros_like(ar8) print(ar8)
[[ 0 1 2 3 4 5 6 7 8 9] [10 11 12 13 14 15 16 17 18 19]] [[ 0 1 2 3 4 5 6 7 8 9] [10 11 12 13 14 15 16 17 18 19]]
# 创建数值全为1的数组 ar9 = np.ones(10) print(ar9) print("") ar9 = np.ones((2,5)) print(ar9)
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.] [[1. 1. 1. 1. 1.] [1. 1. 1. 1. 1.]]
# ones_like表示仿造ar9创建一个数值全为1的数组 ar9 = np.array([list(range(10)), list(range(10,20))]) print(ar9) print("") ar9 = np.ones_like(arr) print(ar9)
[[ 0 1 2 3 4 5 6 7 8 9] [10 11 12 13 14 15 16 17 18 19]] [[1 1 1 1 1 1 1 1 1 1] [1 1 1 1 1 1 1 1 1 1]]
# 创建单位矩阵 ar10 = np.eye(10) print(ar10) print("") print(ar10.ndim)
[[1. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 1. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 1. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 1. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 1. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 1. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 1. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]] 2
Numpy通用函数
import numpy as np
# reshape 改变数组维度形状 ar1 = np.arange(10) print(ar1) print("") print(ar1.reshape(5, 2)) # 方式1 print("") ar1 = np.ones((2, 5)) print(ar1) print("") ar1 = np.ones((2, 5)).reshape(5, 2) # 方式2 print(ar1) print("") ar1 = np.reshape(np.arange(9), (3,3)) # 方式3 print(ar1)
[0 1 2 3 4 5 6 7 8 9] [[0 1] [2 3] [4 5] [6 7] [8 9]] [[ 1. 1. 1. 1. 1.] [ 1. 1. 1. 1. 1.]] [[ 1. 1.] [ 1. 1.] [ 1. 1.] [ 1. 1.] [ 1. 1.]] [[0 1 2] [3 4 5] [6 7 8]]
# T 数组转置 ar2 = np.zeros((2, 5)) print(ar2) print("") print(ar2.T)
[[ 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0.]] [[ 0. 0.] [ 0. 0.] [ 0. 0.] [ 0. 0.] [ 0. 0.]]
# resize跟reshape类似 区别是当改变数组维度时不会因数据量的不同而报错 ar3 = np.reshape(np.arange(15), (3, 5)) print(ar3) print("") ar4 = np.resize(ar3, (5, 3)) print(ar4) print("") ar5 = np.resize(ar3, (3, 4)) # 当改变后的数组需要的数据量比原数组的数据量少时 会依次排序 多余的数值不会显示 print(ar5) print("") ar6 = np.resize(ar3, (4, 5)) # 当改变后的数组需要的数据量比原数组的数据量多时 不足的会补充排序 print(ar6)
[[ 0 1 2 3 4] [ 5 6 7 8 9] [10 11 12 13 14]] [[ 0 1 2] [ 3 4 5] [ 6 7 8] [ 9 10 11] [12 13 14]] [[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]] [[ 0 1 2 3 4] [ 5 6 7 8 9] [10 11 12 13 14] [ 0 1 2 3 4]]
# np.resize(a, shape) 有返回值 不会改变原数组 ar7 = np.arange(10) print(ar7) print("") ar8 = np.resize(ar7, (2, 5)) print(ar8) print("") print(ar7)
[0 1 2 3 4 5 6 7 8 9] [[0 1 2 3 4] [5 6 7 8 9]] [0 1 2 3 4 5 6 7 8 9]
# a.resize(shape) 没有返回值 直接改变原数组 ar7 = np.arange(10) print(ar7) print("") ar8 = ar7.resize(2, 5) # 注意ar8为None 因为是改变原数组 所以没有返回值 print(ar8) print("") print(ar7)
[0 1 2 3 4 5 6 7 8 9] None [[0 1 2 3 4] [5 6 7 8 9]]
# 数据类型转换 astype ar9 = np.arange(10, dtype=np.float64) print(ar9) print(ar9.dtype) # 查看数值类型 print("") ar10 = ar9.astype(np.int64) # 改变数值类型 print(ar10) print(ar10.dtype)
[ 0. 1. 2. 3. 4. 5. 6. 7. 8. 9.] float64 [0 1 2 3 4 5 6 7 8 9] int64
# 数组堆叠 # hstack vstack a = np.arange(10) print(a) print("") b= np.arange(10, 20) print(b) print("") c = np.hstack((a, b)) # hstack表示横向连接 print(c) print("") d = np.vstack((a, b)) # vstack表示纵向连接 print(d) print("")
[0 1 2 3 4 5 6 7 8 9] [10 11 12 13 14 15 16 17 18 19] [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19] [[ 0 1 2 3 4 5 6 7 8 9] [10 11 12 13 14 15 16 17 18 19]] [[ 0 1 2 3 4 5 6 7 8 9] [10 11 12 13 14 15 16 17 18 19]]
# stack print(a) print("") print(b) print("") e = np.stack((a, b), axis=0) # axis=0 横向看(纵向连接) print(e) print("") e = np.stack((a, b), axis=1) # 纵向看(横向连接) print(e)
[0 1 2 3 4 5 6 7 8 9] [10 11 12 13 14 15 16 17 18 19] [[ 0 1 2 3 4 5 6 7 8 9] [10 11 12 13 14 15 16 17 18 19]] [[ 0 10] [ 1 11] [ 2 12] [ 3 13] [ 4 14] [ 5 15] [ 6 16] [ 7 17] [ 8 18] [ 9 19]]
# 数组拆分 a = np.arange(16).reshape(4, 4) print(a) print("") b = np.hsplit(a, 2) # 按列来切割 print(b) print("") c = np.vsplit(a, 2) # 按行来切割 print(c)
[[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11] [12 13 14 15]] [array([[ 0, 1], [ 4, 5], [ 8, 9], [12, 13]]), array([[ 2, 3], [ 6, 7], [10, 11], [14, 15]])] [array([[0, 1, 2, 3], [4, 5, 6, 7]]), array([[ 8, 9, 10, 11], [12, 13, 14, 15]])]
# 求和 sum a = np.arange(10).reshape(2, 5) print(a) print("") print(np.sum(a, axis=0)) # 0代表横轴 print("") print(np.sum(a, axis=1)) # 1代表纵轴
[[0 1 2 3 4] [5 6 7 8 9]] [ 5 7 9 11 13] [10 35]
# 排序 sort print(np.sort(np.array([3, 5, 5, 3, 1, 4])))
[1 3 3 4 5 5]
Numpy基本索引和切片
import numpy as np
# 一维数组 arr = np.array(range(10)) print(arr) print("") print(arr[4]) print(arr[:3]) print(arr[::2])
[0 1 2 3 4 5 6 7 8 9] 4 [0 1 2] [0 2 4 6 8]
# 二维数组 arr = np.arange(20).reshape(4, 5) print(arr) print("") print(arr[2]) # 取出某一行 print("") print(arr[2][2]) # 取出某一个数 print("") print(arr[1:3]) # 取出多行 print("") print(arr[2, 2]) # 逗号前代表行 逗号后代表列 print("") print(arr[:2, 1:3]) # 取出多行多列
[[ 0 1 2 3 4] [ 5 6 7 8 9] [10 11 12 13 14] [15 16 17 18 19]] [10 11 12 13 14] 12 [[ 5 6 7 8 9] [10 11 12 13 14]] 12 [[1 2] [6 7]]
# 三维数组 arr = np.arange(48).reshape(3,4,4) # 3个4行4列的数组 print(arr) print("*"*30) print(arr[2]) print("*"*30) print(arr[2][1]) print("*"*30) print(arr[2][1][1])
[[[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11] [12 13 14 15]] [[16 17 18 19] [20 21 22 23] [24 25 26 27] [28 29 30 31]] [[32 33 34 35] [36 37 38 39] [40 41 42 43] [44 45 46 47]]] ****************************** [[32 33 34 35] [36 37 38 39] [40 41 42 43] [44 45 46 47]] ****************************** [36 37 38 39] ****************************** 37
Numpy布尔型索引及切片
# 用布尔型索引去做筛选 arr = np.arange(12).reshape(3, 4) print(arr) print("") a = np.array([True, False, True]) print(a) print("") b = np.array([True, False, False, True]) print(b) print("") print(arr[a, :]) print("") print(arr[:, b])
[[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]] [ True False True] [ True False False True] [[ 0 1 2 3] [ 8 9 10 11]] [[ 0 3] [ 4 7] [ 8 11]]
# 用布尔型矩阵去做筛选 print(arr) print("") m = arr>5 print(m) print("") n = arr[arr>5] print(n)
[[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]] [[False False False False] [False False True True] [ True True True True]] [ 6 7 8 9 10 11]
Numpy随机数生成
import numpy as np
# random.normal 正态分布随机数 print(np.random.normal(size=(4, 4))) # 生成一个4行4列的正态分布随机数
[[ 1.01645652 -0.30952914 -0.40576099 -0.94259139] [-0.16483869 0.42278586 0.8260384 -0.88469832] [ 1.31487466 -0.86188981 -0.71485117 -2.12449215] [-1.80353888 -0.93264659 -1.1424078 0.31905742]]
# random.rand 平均分布 随机生成 [0-1) 之间的数 a = np.random.rand() # 生成一个数 print(a) print("") b = np.random.rand(4) # 生成4个数 print(b) print("") c = np.random.rand(2,4) # 生成二维数组 print(c)
0.11426452609434679 [ 0.79633633 0.32467913 0.28038512 0.56304155] [[ 0.06561635 0.40454132 0.58158716 0.73527881] [ 0.59301023 0.74935326 0.24347665 0.59653582]]
# np.random.randint 在自定义的范围内随机生成整数 a = np.random.randint(3) # 在 [0-3)的范围内随机生成一个整数 print(a) print("") b = np.random.randint(2, 10) # [2-10)的范围内随机生成一个整数 print(b) print("") c = np.random.randint(20, size=10) # 生成一个 [0-20) 之间 有10个整数元素的一维数组 print(c) print("") d = np.random.randint(20, 40, size=10) # 生成一个 [20-40) 之间 有10个整数元素的一维数组 print(d) print("") e = np.random.randint(40, 50, size=(2, 5)) # 生成一个 [40-50) 之间 有2行5列元素的二维数组 print(e)
0 6 [ 9 11 5 12 19 4 19 1 7 10] [24 20 34 38 37 24 26 35 35 30] [[49 42 42 44 49] [44 44 40 49 45]]
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29