我们最后来讲python另外一个非常出色的可视化工具,使用plotly创建出色的交互式图,最后,不再需要Matplotlib!
Plotly具有三个重要功能:
· 悬停:将鼠标悬停在图表上时,将弹出注释
· 交互性:无需任何其他设置即可使图表互动(例如,穿越时空的旅程)
· 漂亮的地理空间图:Plotly具有一些内置的基本地图绘制功能,但是另外,可以使用mapbox集成来生成惊人的图表。
我们通过运行fig = x。(PARAMS)然后调用fig.show()来调用绘图:
fig = px.scatter( data_frame=data[data['Year'] == 2018], x="Log GDP per capita", y="Life Ladder", size="Gapminder Population", color="Continent", hover_name="Country name", size_max=60 ) fig.show()
Plotly scatter plot, plotting Log GDP per capita against Life Ladder, where color indicates continent and size of the marker the population
fig = px.scatter( data_frame=data, x="Log GDP per capita", y="Life Ladder", animation_frame="Year", animation_group="Country name", size="Gapminder Population", color="Continent", hover_name="Country name", facet_col="Continent", size_max=45, category_orders={'Year':list(range(2007,2019))} ) fig.show()
Visualization of how the plotted data changes over the years
fig = px.bar( data, x="Continent", y="Gapminder Population", color="Mean Log GDP per capita", barmode="stack", facet_col="Year", category_orders={"Year": range(2007,2019)}, hover_name='Country name', hover_data=[ "Mean Log GDP per capita", "Gapminder Population", "Life Ladder" ] ) fig.show()
Seems like not all countries with high life expectations are happy!
fig = px.bar( data, x="Continent", y="Gapminder Population", color="Mean Log GDP per capita", barmode="stack", facet_col="Year", category_orders={"Year": range(2007,2019)}, hover_name='Country name', hover_data=[ "Mean Log GDP per capita", "Gapminder Population", "Life Ladder" ] ) fig.show()
Filtering a bar chart is easy. Not surprisingly, South Korea is among the wealthy countries in Asia.
fig = px.choropleth( data, locations="ISO3", color="Life Ladder", hover_name="Country name", animation_frame="Year") fig.show()
Map visualization of how happiness evolves over the years. Syria and Afghanistan are at the very end of the Life Ladder range (unsurprisingly)
在本文中,我们学习了如何成为真正的Python可视化高手,了解了如何在快速探索方面提高效率,以及在再次召开董事会会议时如何创建更精美的图表。 还有交互式地图,这在绘制地理空间数据时特别有用哦。
本文翻译自Fabian Bosler的文章《Learn how to create beautiful and insightful charts with Python — the Quick, the Pretty, and the Awesome》 参考https://towardsdatascience.com/plotting-with-python-c2561b8c0f1f)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27