
sns.reset_defaults() sns.set( rc={'figure.figsize':(7,5)}, style="white" # nicer layout )
如前所述,我非常喜欢分布。 直方图和核密度分布都是可视化特定变量的关键特征的有效方法。 让我们看看如何在一个图表中为单个变量或多个变量分配生成分布。
Left chart: Histogram and kernel density estimation of “Life Ladder” for Asian countries in 2018; Ri
每当我想直观地探索两个或多个变量之间的关系时,通常都会归结为某种形式的散点图和分布评估。 概念上相似的图有三种变体。 在每个图中,中心图(散点图,双变量KDE和hexbin)有助于理解两个变量之间的联合频率分布。 此外,在中心图的右边界和上边界,描绘了各个变量的边际单变量分布(作为KDE或直方图)。
sns.jointplot( x='Log GDP per capita', y='Life Ladder', data=data, kind='scatter' # or 'kde' or 'hex' )
Seaborn jointplot with scatter, bivariate kde, and hexbin in the center graph and marginal distribut
散点图是一种可视化两个变量的联合密度分布的方法。 我们可以通过添加色相来添加第三个变量,并通过添加size参数来可视化第四个变量。
sns.scatterplot( x='Log GDP per capita', y='Life Ladder', data=data[data['Year'] == 2018], hue='Continent', size='Gapminder Population' ) # both, hue and size are optional sns.despine() # prettier layout
Log GDP per capita against Life Ladder, colors based on the continent and size on population
小提琴图是箱形图和籽粒密度估计值的组合。 它起着箱形图的作用。 它显示了跨类别变量的定量数据分布,以便可以比较那些分布。
sns.set( rc={'figure.figsize':(18,6)}, style="white" ) sns.violinplot( x='Continent', y='Life Ladder', hue='Mean Log GDP per capita', data=data ) sns.despine()
Violin plot where we plot continents against Life Ladder, we use the Mean Log GDP per capita to grou
Seaborn对图在一个大网格中绘制了两个变量散点图的所有组合。 我通常感觉这有点信息过载,但是它可以帮助发现模式。
sns.set( style="white", palette="muted", color_codes=True ) sns.pairplot( data[data.Year == 2018][[ 'Life Ladder','Log GDP per capita', 'Social support','Healthy life expectancy at birth', 'Freedom to make life choices','Generosity', 'Perceptions of corruption', 'Positive affect', 'Negative affect','Confidence in national government', 'Mean Log GDP per capita' ]].dropna(), hue='Mean Log GDP per capita' )
Seaborn scatterplot grid where all selected variables a scattered against every other variable in th
对我而言,Seaborn的FacetGrid是使用Seaborn的最令人信服的论点之一,因为它使创建多图变得轻而易举。 通过对图,我们已经看到了FacetGrid的示例。 FacetGrid允许创建按变量分段的多个图表。 例如,行可以是一个变量(人均GDP类别),列可以是另一个变量(大陆)。
它确实比我个人需要更多的自定义(即使用matplotlib),但这仍然很吸引人。
FacetGrid —折线图
g = sns.FacetGrid( data.groupby(['Mean Log GDP per capita','Year','Continent'])['Life Ladder'].mean().reset_index(), row='Mean Log GDP per capita', col='Continent', margin_titles=True ) g = (g.map(plt.plot, 'Year','Life Ladder'))
Life Ladder on the Y-axis, Year on the X-axis. The grid’s columns are the continent, and the grid’s rows are the different levels of Mean Log GDP per capita. Overall things seem to be getting better for the countries with a Low Mean Log GDP per Capita in North America and the countries with a Medium or High Mean Log GDP per Capita in Europe
FacetGrid —直方图
g = sns.FacetGrid(data, col="Continent", col_wrap=3,height=4) g = (g.map(plt.hist, "Life Ladder",bins=np.arange(2,9,0.5)))
FacetGrid with a histogram of LifeLadder by continent
FacetGrid —带注释的KDE图
也可以向网格中的每个图表添加构面特定的符号。 在下面的示例中,我们添加平均值和标准偏差,并在该平均值处绘制一条垂直线(下面的代码)。
Life Ladder kernel density estimation based on the continent, annotated with a mean and standard deviation
def vertical_mean_line(x, **kwargs): plt.axvline(x.mean(), linestyle ="--", color = kwargs.get("color", "r")) txkw = dict(size=15, color = kwargs.get("color", "r")) label_x_pos_adjustment = 0.08 # this needs customization based on your data label_y_pos_adjustment = 5 # this needs customization based on your data if x.mean() < 6: # this needs customization based on your data tx = "mean: {:.2f}\n(std: {:.2f})".format(x.mean(),x.std()) plt.text(x.mean() + label_x_pos_adjustment, label_y_pos_adjustment, tx, **txkw) else: tx = "mean: {:.2f}\n (std: {:.2f})".format(x.mean(),x.std()) plt.text(x.mean() -1.4, label_y_pos_adjustment, tx, **txkw) _ = data.groupby(['Continent','Year'])['Life Ladder'].mean().reset_index() g = sns.FacetGrid(_, col="Continent", height=4, aspect=0.9, col_wrap=3, margin_titles=True) g.map(sns.kdeplot, "Life Ladder", shade=True, color='royalblue') g.map(vertical_mean_line, "Life Ladder")
FacetGrid —热图
我最喜欢的绘图类型之一是热图FacetGrid,即网格每个面中的热图。 这种类型的绘图对于在一个绘图中可视化四个维度和一个度量很有用。 该代码有点麻烦,但可以根据需要快速进行调整。 值得注意的是,这种图表需要相对大量的数据或适当的细分,因为它不能很好地处理缺失值。
Facet heatmap, visualizing on the outer rows a year range, outer columns the GDP per Capita, on the inner rows the level of perceived corruption and the inner columns the continents. We see that happiness increases towards the top right (i.e., high GDP per Capita and low perceived corruption). The effect of time is not definite, and some continents (Europe and North America) seem to be happier than others (Africa).
def draw_heatmap(data,inner_row, inner_col, outer_row, outer_col, values, vmin,vmax): sns.set(font_scale=1) fg = sns.FacetGrid( data, row=outer_row, col=outer_col, margin_titles=True ) position = left, bottom, width, height = 1.4, .2, .1, .6 cbar_ax = fg.fig.add_axes(position) fg.map_dataframe( draw_heatmap_facet, x_col=inner_col, y_col=inner_row, values=values, cbar_ax=cbar_ax, vmin=vmin, vmax=vmax ) fg.fig.subplots_adjust(right=1.3) plt.show() def draw_heatmap_facet(*args, **kwargs): data = kwargs.pop('data') x_col = kwargs.pop('x_col') y_col = kwargs.pop('y_col') values = kwargs.pop('values') d = data.pivot(index=y_col, columns=x_col, values=values) annot = round(d,4).values cmap = sns.color_palette("Blues",30) + sns.color_palette("Blues",30)[0::2] #cmap = sns.color_palette("Blues",30) sns.heatmap( d, **kwargs, annot=annot, center=0, cmap=cmap, linewidth=.5 ) # Data preparation _ = data.copy() _['Year'] = pd.cut(_['Year'],bins=[2006,2008,2012,2018]) _['GDP per Capita'] = _.groupby(['Continent','Year'])['Log GDP per capita'].transform( pd.qcut, q=3, labels=(['Low','Medium','High']) ).fillna('Low') _['Corruption'] = _.groupby(['Continent','GDP per Capita'])['Perceptions of corruption'].transform( pd.qcut, q=3, labels=(['Low','Medium','High']) ) _ = _[_['Continent'] != 'Oceania'].groupby(['Year','Continent','GDP per Capita','Corruption'])['Life Ladder'].mean().reset_index() _['Life Ladder'] = _['Life Ladder'].fillna(-10) draw_heatmap( data=_, outer_row='Corruption', outer_col='GDP per Capita', inner_row='Year', inner_col='Continent', values='Life Ladder', vmin=3, vmax=8, )
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27