京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用于实际问题的深度神经网络可能具有10层以上的隐藏层。它的拓扑可能很简单,也可能很复杂。网络中的层越多,它可以识别的特征就越多。不幸的是,网络中的层越多,计算所需的时间就越长,并且训练起来就越困难。
卷积神经网络(CNN)通常用于机器视觉。卷积神经网络通常使用卷积,池化,ReLU,完全连接和丢失层来模拟视觉皮层。卷积层基本上采用许多小的重叠区域的积分。池化层执行非线性下采样的形式。ReLU层应用非饱和激活函数f(x)= max(0,x)。在完全连接的层中,神经元与上一层中的所有激活都具有连接。损失层使用Softmax或交叉熵损失函数进行分类,或使用欧几里得损失函数进行回归,计算网络训练如何惩罚预测标签与真实标签之间的偏差。
递归神经网络(RNN)通常用于自然语言处理(NLP)和其他序列处理,还有长短期记忆(LSTM)网络和基于注意力的神经网络。在前馈神经网络中,信息从输入经过隐藏层流到输出。这将网络限制为一次只能处理一个状态。
在递归神经网络中,信息通过一个循环循环,这使网络可以记住最近的先前输出。这样可以分析序列和时间序列。RNN有两个常见的问题:爆炸梯度(通过固定梯度很容易固定)和消失梯度(不太容易固定)。
在LSTM中,在两种情况下,网络都可以通过更改权重来忘记(控制)先前的信息并记住这些信息。这有效地为LSTM提供了长期和短期记忆,并解决了梯度消失的问题。LSTM可以处理数百个过去输入的序列。
注意模块是将权重应用于输入向量的通用门。分层的神经注意编码器使用多层注意模块来处理成千上万的过去输入。
不是神经网络的随机决策森林(RDF)对于一系列分类和回归问题很有用。RDF由多层构成,但不是神经元,而是由决策树构建,并输出各个树预测的统计平均值(分类模式或回归均值)。RDF的随机方面是对单个树使用引导聚合(也称为装袋),并为树获取特征的随机子集。
XGBoost(极限梯度增强)也不是一个深度神经网络,它是一种可扩展的,端到端的树增强系统,已针对许多机器学习挑战产生了最先进的结果。经常提到装袋和提振。区别在于,梯度树增强不是生成随机树的集合,而是从单个决策树或回归树开始,对其进行优化,然后从第一棵树的残差构建下一棵树。
一些最好的Python的深度学习框架是TensorFlow,Keras,PyTorch和MXNet。Deeplearning4j是最好的Java深度学习框架之一。ONNX和TensorRT是深度学习模型的运行时。
原文链接:https://www.infoworld.com/article/3512245/deep-learning-vs-machine-learning-understand-the-differences.html
翻译:CDA数据分析师
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27