
用于实际问题的深度神经网络可能具有10层以上的隐藏层。它的拓扑可能很简单,也可能很复杂。网络中的层越多,它可以识别的特征就越多。不幸的是,网络中的层越多,计算所需的时间就越长,并且训练起来就越困难。
卷积神经网络(CNN)通常用于机器视觉。卷积神经网络通常使用卷积,池化,ReLU,完全连接和丢失层来模拟视觉皮层。卷积层基本上采用许多小的重叠区域的积分。池化层执行非线性下采样的形式。ReLU层应用非饱和激活函数f(x)= max(0,x)。在完全连接的层中,神经元与上一层中的所有激活都具有连接。损失层使用Softmax或交叉熵损失函数进行分类,或使用欧几里得损失函数进行回归,计算网络训练如何惩罚预测标签与真实标签之间的偏差。
递归神经网络(RNN)通常用于自然语言处理(NLP)和其他序列处理,还有长短期记忆(LSTM)网络和基于注意力的神经网络。在前馈神经网络中,信息从输入经过隐藏层流到输出。这将网络限制为一次只能处理一个状态。
在递归神经网络中,信息通过一个循环循环,这使网络可以记住最近的先前输出。这样可以分析序列和时间序列。RNN有两个常见的问题:爆炸梯度(通过固定梯度很容易固定)和消失梯度(不太容易固定)。
在LSTM中,在两种情况下,网络都可以通过更改权重来忘记(控制)先前的信息并记住这些信息。这有效地为LSTM提供了长期和短期记忆,并解决了梯度消失的问题。LSTM可以处理数百个过去输入的序列。
注意模块是将权重应用于输入向量的通用门。分层的神经注意编码器使用多层注意模块来处理成千上万的过去输入。
不是神经网络的随机决策森林(RDF)对于一系列分类和回归问题很有用。RDF由多层构成,但不是神经元,而是由决策树构建,并输出各个树预测的统计平均值(分类模式或回归均值)。RDF的随机方面是对单个树使用引导聚合(也称为装袋),并为树获取特征的随机子集。
XGBoost(极限梯度增强)也不是一个深度神经网络,它是一种可扩展的,端到端的树增强系统,已针对许多机器学习挑战产生了最先进的结果。经常提到装袋和提振。区别在于,梯度树增强不是生成随机树的集合,而是从单个决策树或回归树开始,对其进行优化,然后从第一棵树的残差构建下一棵树。
一些最好的Python的深度学习框架是TensorFlow,Keras,PyTorch和MXNet。Deeplearning4j是最好的Java深度学习框架之一。ONNX和TensorRT是深度学习模型的运行时。
原文链接:https://www.infoworld.com/article/3512245/deep-learning-vs-machine-learning-understand-the-differences.html
翻译:CDA数据分析师
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术》一书中指出:AI思维, ...
2025-07-17数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10