
机器学习既是艺术又是科学。但当您查看机器学习算法时,没有一种解决方案或一种适合所有情况的算法。有几个因素会影响您选择哪种机器学习。
有些问题非常具体,需要采取独特的方法。例如,如果您使用推荐系统,这是一种非常常见的机器学习算法,解决的是非常具体的问题。而其他问题非常开放,则需要试错的方法去解决。监督学习、分类和回归都是非常开放的。它们可以用于异常检测,或者用来打造更通用的预测模型。。
我们在选择机器学习算法时所做的一些决定,更多地取决于商业决策,而不是优化或者算法的技术面。在下文中,我们将讨论有助于缩小机器学习算法选择范围的一些因素。
在开始审视不同的机器学习算法之前,你必须对你的数据、面临的问题和局限有一个清晰的认识。
在决定使用哪种算法时,必须考虑数据的类型和种类。一些算法只需要少量样本,另一些则需要大量样本。某些算法只能处理特定类型的数据。例如,朴素贝叶斯算法与分类数据相得益彰,但对缺失数据完全不敏感。
因此,您需要:
了解数据
清理数据
3.数据是否需要汇总
增强数据
2.不同的模型可能对特征工程有不同的要求。一些要求已经内置到特征工程中。
下一步是对问题进行归类。这分两步。
2.按输出数据分类。
你已经对自己的处境有了一个清晰的认识,接下来是识别适用的、利用手中工具可以实际执行的算法。影响模型选择的因素包括:
影响算法选择的一个重要标准是模型的复杂性。一般来说,更复杂的模型:
此外,同一种机器学习算法会因为参数的数量或者对某些超参数的选择而变得更加复杂。例如:
使同一算法更复杂,这会增加过拟合的几率。
这可能是最简单的机器学习算法。当你想计算某个连续值的时候,可以使用回归算法,而分类算法的输出数据是类。所以,每当你要预测一个正在进行当中的过程的某个未来值时,你可以使用回归算法。但线性回归在特征冗余(也就是存在多重共线性)的情况下会不稳定。
线性回归的几个用例:
逻辑回归进行二元分类,所以输出数据是二元的。这种算法把非线性函数(sigmoid)应用于特征的线性组合,所以它是一个非常小的神经网络实例。
逻辑回归提供了模型正则化的很多方法,不必担心特征是否相关,就像使用朴素贝叶斯算法的时候一样。与决策树和支持向量机相比,逻辑回归提供了出色的概率解释,能轻易地用新数据来更新模型。如果想建立一个概率框架,或者希望以后将更多的训练数据迅速整合到模型中,可以使用逻辑回归。这种算法还能帮助你了解预测背后的贡献因素,不是一种黑箱方法。
逻辑回归的几个用例:
人们很少使用单一的决策树,但与其他很多决策树结合起来,就能变成非常有效的算法,比如随机森林和梯度提升树。
**决策树可以轻松地处理特征的交互关系,并且是非参数化的,所以不必担心离群值或者数据是否线性可分。**缺点是不支持在线学习,所以在新样本到来时,必须重建决策树。另一个缺点是容易过拟合,但随机森林和提升树等集成方法可以克服这一缺点。决策树还会占用很多内存(特征越多,决策树就可能越深、越大)。
决策树是帮助你在几个行动方案之间作出选择的出色工具。
K-means
有时,你不知道任何标签,你的目标是根据对象的特征赋予标签。这被称为聚类任务。聚类算法的一个用例是根据某些共同属性,将一大群用户分组。
如果在你的问题陈述中,存在“这是如何组织的”等疑问,或者要求将某物分组或聚焦于特定的组,那么你应该采用聚类算法。
K-Means的最大缺点,在于必须事先知道你的数据中将有多少个簇。因此,这可能需要进行很多的尝试,来“猜测”簇的最佳K值。
主成分分析(PCA)
PCA能降维。有时,数据的特征很广泛,可能彼此高度相关,在数据量大的情况下,模型容易过拟合。这时可以使用PCA。
PCA大受欢迎的一个关键,在于除了样本的低维表示以外,它还提供了变量的同步低维表示。同步的样本和变量表示提供了以可视方式寻找一组样本的特征变量。
SVM是一种监督学习方法,被广泛用于模式识别和分类问题(前提是数据只有两类)。
SVM的优点是精度高,对避免过拟合有很好的理论保障,而且只要有了适当的核函数,哪怕数据在基本特征空间中不是线性可分的,SVM也能运行良好。在解决高维空间是常态的文本分类问题时,SVM特别受欢迎。SVM的缺点是消耗大量内存、难以解释和不易调参。
SVM在现实中的几个应用:
这是一种基于贝叶斯定理的分类方法,很容易构建,对大数据集特别有用。除了具有简单的优点以外,朴素贝叶斯甚至好于某些高度复杂的分类方法。在CPU和内存资源是限制因素的情况下,朴素贝叶斯也是很好的选择。
朴素贝叶斯超级简单,只需要做些算术即可。如果朴素贝叶斯关于条件独立的假设确实成立,那么朴素贝叶斯分类器将比逻辑回归等判别模型更快地收敛,因此你需要的训练数据更少。即使假设不成立,朴素贝叶斯分类器在实践中仍然常常表现不俗。如果你需要的是快速简单且表现出色,朴素贝叶斯将是不错的选择。其主要缺点是学习不了特征间的交互关系。
朴素贝叶斯在现实中的几个应用:
随机森林包含多颗决策树。它能解决拥有大数据集的回归和分类问题,还有助于从众多的输入变量中识别最重要的变量。随机森林可扩展到任意维数,其表现通常是可接受的。遗传算法可扩展到任何维度以及对数据本身知之甚少的任何数据,微生物遗传算法实现起来代价最低、最简单。但随机森林的学习速度可能很慢(取决于参数化),而且不可能迭代地改进生成模型。
随机森林在现实中的几个应用:
神经网络包含神经元之间的连接权重。权重是平衡的,在学习数据点后继续学习数据点。所有权重被训练后,神经网络可以用来预测类或者量,如果发生了一个新的输入数据点的回归。用神经网络可以训练极其复杂的模型,它们能作为黑箱,不必在训练模型之前进行不可预测的、复杂的特征工程。再加上“深度方法”,即便是更加不可预测的模型也能被用来实现新的可能性。例如,利用深度神经网络,对象识别近期取得巨大进步。应用于非监督学习任务,比如特征提取,深度学习还能从原始图像或语音中提取特征,不需要太多的人类干预。
另一方面,神经网络非常难以解释说明,参数化极其令人头疼,而且非常耗费资源和内存。
Scikit速查表
scikit-learn提供了一张非常深入、清晰易懂的流程图,帮助你选择适当的算法,用起来非常方便。
总结
通常来说,你可以参考以上内容,缩小算法选择的范围,但一开始很难知道哪个算法最适合你。最好是迭代筛选。把你的数据输入你认为可能是佳选择的机器学习算法,并行或依次运行这些算法,最后评估算法的表现,选出最好的那个。
最后,为现实问题设计恰当的解决方案不仅仅是一个应用数学问题,还需要考虑商业需求、规章制度、利益相关者的关切和相当多的专业知识。在解决一个机器问题时,结合和平衡这几个方面至关重要。能做到这一点的人才能创造最大的价值。
原文链接:https://hackernoon.com/choosing-the-right-machine-learning-algorithm-68126944ce1f
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28