
两项分别由英国人工智能实验室DeepMind与由德国和希腊的研究人员进行的研究显示了AI与神经网络科学之间有着令人着迷的关系。
就像大多数科学家说的那样,我们距开发能够像人类一样有效地解决问题的人工智能还差几十年。在创造通用AI的道路上,人脑(可以说是最复杂的自然创造)是我们掌握的最佳指南。
神经科学对神经系统的研究,为大脑如何工作提供了有趣的见解,大脑是开发更好的AI系统的关键组成部分。相应地,更好的AI系统的开发可以帮助推动神经科学向前发展,并进一步释放大脑的秘密。
例如,卷积神经网络(CNN)是人工智能最新进展的关键贡献者之一,它很大程度上受到视觉皮层神经科学研究的启发。另一方面,神经科学家利用AI算法研究来自大脑的数百万个信号,并找出可能消失的模式。这两个领域密切相关,它们的协同作用产生了非常有趣的结果。
神经科学领域的最新发现表明,我们在AI方面正在做的正确的事情,以及我们做错了什么。
DeepMind的研究人员最近进行的一项研究证明,人工智能研究(至少是其中的一部分)正朝着正确的方向发展。
感谢神经科学,我们知道人类和动物学习的基本机制之一就是奖惩。积极的结果会鼓励我们重复某些任务(做运动,学习考试等),而消极的结果会阻止我们重复犯错(触摸火炉)。
俄罗斯生理学家伊凡·帕夫洛夫(Ivan Pavlov)的实验最为人所知,这种奖罚机制是训练狗在听到铃铛时会期待食物。我们还知道,多巴胺是中脑产生的一种神经递质,在调节大脑的奖励功能中起着重要作用。
强化学习(RL)是人工智能研究中最热门的领域之一,它是根据大脑的奖赏/惩罚机制而大致形成的。在RL中,设置了AI代理来探索问题空间并尝试不同的操作。对于其执行的每个动作,代理都会收到数字奖励或惩罚。通过大量的试验和错误,并检查其操作的结果,AI代理开发了一种数学模型,该模型经过了优化,可以最大程度地提高奖励并避免惩罚。
最近,AI研究人员一直致力于分布增强学习以创建更好的模型。分布式RL的基本思想是使用多种因素以一系列乐观和悲观的方式预测奖惩。分布强化学习对于创建对环境变化更具弹性的AI代理至关重要。
这项新的研究是由哈佛大学和DeepMind共同完成的,并于上周在《自然》杂志 上发表。该研究发现,小鼠大脑的特性与分布强化学习的特性非常相似。AI研究人员测量了大脑中的多巴胺激发率,以检查生物神经元的奖励预测率的差异。
有趣的是,在小鼠的神经系统中发现了AI科学家在分布式强化学习模型中编程的乐观和悲观机制。DeepMind的研究人员在AI实验室网站上发布的博客文章中写道:“总而言之,我们发现大脑中的多巴胺神经元每个都被调到了不同的悲观或乐观水平。“在人工强化学习系统中,这种多样化的调整会产生更丰富的训练信号,从而极大地加快了神经网络的学习速度,我们推测大脑可能出于相同的原因使用它。”
使这项发现与众不同的是,尽管AI研究通常从神经科学发现中汲取灵感,但在这种情况下,神经科学研究已经验证了AI发现。研究人员写道:“它使我们对AI研究走上正轨的信心增强,因为该算法已被我们所知道的最智能的实体:大脑使用。”
这也将为神经科学的进一步研究打下基础,这反过来将有利于AI领域发展。
尽管DeepMind的新发现证实了AI强化学习研究的成果,但柏林科学家的另一项研究却于1月初发表在《科学》杂志上,这证明我们对大脑所做的一些基本假设是完全错误的。
关于大脑结构的普遍信念是,神经元是神经系统的基本组成部分,它们是简单的积分器,用于计算其输入的加权总和。基于这种理念,设计了一种流行的机器学习算法类型:人工神经网络。
单独地,人工神经元执行非常简单的操作。它需要几个输入,将它们乘以预定义的权重,求和后再通过激活函数运行它们。但是,当多层连接成千上万(十亿)个人工神经元时,您将获得一个非常灵活的数学函数,可以解决复杂的问题,例如检测图像中的对象或记录语音。
人工神经元的多层网络(通常称为深度神经网络)是过去十年中深度学习革命背后的主要动力。
但是,对生物神经元是基本数学的“愚蠢”计算器的普遍认识过于简单。德国研究人员的最新发现后来被希腊的神经科学家证实,证明了单个神经元可以执行XOR运算,这一前提遭到了AI先驱者如Marvin Minsky和Seymour Papert的拒绝。
尽管并非所有神经元都具有这种能力,但这一发现的意义是重大的。例如,这可能意味着单个神经元可能在其内部包含一个深层网络。宾夕法尼亚大学的计算神经科学家康拉德·科尔丁(Konrad Kording)并未参与这项研究,他对《广达杂志》(Quanta Magazine)表示,这一发现可能意味着“单个神经元可能能够计算出真正复杂的功能。例如,它本身可能就能识别出一个物体。”
这对人工智能研究意味着什么?至少,这意味着我们需要重新考虑我们对神经元的建模。它可能会刺激对具有不同类型神经元的新型人工神经元结构和网络的研究。也许它可以帮助我们摆脱必须构建超大型神经网络和数据集来解决非常简单的问题的陷阱。
外语原文链接: https://bdtechtalks.com/2020/01/20/neuroscience-artificial-intelligence-synergies/
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11