京公网安备 11010802034615号
经营许可证编号:京B2-20210330
动态条形图大火了一阵子,尤其是那种对比世界各国历年来的GDP或者军事实力的动态条形图,配上激动人心的音乐,眼看着中国从后往前排名不断考前,作为爱国的人,集体荣誉感爆棚的那种,真的是心潮澎湃自豪到仿佛国力的提升我也做出了不可磨灭的贡献一般(捂脸)。
虽然我没有对国力提升做出什么不可磨灭的贡献,但是我可以探索下动态条形图是怎样绘制的,应该也算是传播知识了吧(笑哭)。
先看下数据,依然是英超各球队的积分数据,制作动态条形图,对数据量要求会稍微大一些,对于有时间维度的数据来说,时间越长,能体现的变化和信息量就会越多,这里我们只选取了从2010–2019年英超各球队的积分数据,这个数据量不算大,但是不影响学习原理和实现步骤。
选取每年前十的球队进入数据集,最终的数据集长这个样子:
我们一步一步来,先绘制一个简单的条形图,比如绘制2019年排名前十球队积分的条形图,准备数据,把2019年的数据提取出来然后进行排序并选择前十名的球队数据,具体代码如下:
year = 2019
dff = (df_t[df_t["年份"].eq(year)]
.sort_values(by='积分', ascending=True)
.tail(10))
dff
结果:
简单解释下,这里并没有复杂的代码,都是常用的语法,除了一个df.eq(),这个方法主要是进行对比,将df中符合括号内变量要求的数据并提取出来,原始的数据中包含了从2010–2019的所有数据,这里只需要2019年的,所以通过这种方式把2019年的数据提取出来。
后边的排序语法选择升序排序,这样排在第一位的是积分最少的球队,所以要选取排名前十的球队不能用head(10),而是用tail(10),选取结尾的10行。之所以这么操作,还是由于条形图绘制过程中是从下往上画,为了条形的排序是从下往上条形越来越长,所以采用这样的操作。
来看一下上边截取出来的数据集绘制出来的条形图是什么样子的:
plt.figure(figsize=(10,6)) plt.barh(dff['球队'], dff['积分']);
ok,画出来是符合要求的条形图!
如果不设置颜色,画出来的所有条都是一个颜色,就像上边的那幅图。
为了让图形更美观,对各个球队的积分变化看起来更明显,还是要设置一下颜色。这里有两个选择,一是对排名设置颜色,即无论哪个球队是第一名,只要排到第一名就会被指定这种颜色,还有一种是给每个球队指定颜色,无论这个球队排名是多少,它的颜色都不会变。
实践证明第二种方法更复杂一点,但是更容易被接受,所以这里采用的第二种方法来设置颜色。
names = df_t10.球队.unique() #查看排名进过前十的球队都有哪些 names
返回结果一共24个球队:
array(['曼联', '切尔西', '曼城', '阿森纳', '热刺', '利物浦', '埃弗顿', '富勒姆', '阿斯顿维拉',
'桑德兰', '纽卡斯尔', '西布罗姆维奇', '斯旺西', '西汉姆联', '南安普敦', '斯托克城', '水晶宫',
'莱斯特', '伯恩茅斯', '西布朗', '伯恩利', '莱斯特城', '狼队', '谢菲尔德联'], dtype=object)
生成24个不同的颜色:
import matplotlib.cm as cm c = [] for i in range(len(names)): c.append(cm.nipy_spectral(float(i)/len(names))) colors1 = dict(zip(names,c)) # 每个球队对应一个颜色
由于颜色种类比较多,一一指定太费时间和精力,所以引入matplotlib.cm色谱,cm.nipy_spectral()函数,赋给它不同的浮点数数值能够生成不同的颜色。
plt.figure(figsize=(12,6))
#给不同的条形添加不同颜色的时候注意颜色列表有24中颜色,不能直接让颜色等于颜色列表
for i in range(len(dff)):
plt.barh(dff['球队'].iloc[i], dff['积分'].iloc[i], color=colors1[dff['球
队'].iloc[i]],alpha = 0.5)
# 在画布右方添加年份
plt.text(1, 0.4, current_year, transform=ax.transAxes, size=46, ha='right',alpha=0.5);
效果图:
其实大家都知道,所谓视频也是由一帧一帧的画面组成按照顺序播放形成视频的,而我们的动图运用的也是这个原理,所以只需把绘制条形图的代码封装成一个函数,然后重复调用这个函数在不同的数据集上绘制图形就可以实现动态展现。
fig, ax = plt.subplots(figsize=(12, 6)) #同时建立画布和子画布,没有设置默认为一个子画布
def draw_bar(year):
ax.spines['right'].set_color('none') #把右边的边框颜色设置为无色,隐藏右边框
ax.spines['top'].set_color('none') #把上边的边框颜色设置为无色,隐藏上边框
ax.spines['left'].set_color('none') #把右边的边框颜色设置为无色,隐藏左边框
ax.spines['bottom'].set_color('none') #把上边的边框颜色设置为无色,隐藏下边框
#准备数据
dff = (df_t[df_t["年份"].eq(year)].sort_values(by='积分', ascending=True).tail(10))
ax.clear() #清空已存在的图像
for i in range(len(dff)):
colors =cm.nipy_spectral(float(i)/len(dff))
ax.barh(dff['球队'].iloc[i], dff['积分'].iloc[i], height=0.7, color=colors1[dff['球队'].iloc[i]],alpha = 0.5)
ax.text(dff['积分'].iloc[i]-3,i+0.1,dff['球队'].iloc[i])
ax.text(dff['积分'].iloc[i]-2,i-0.3,dff['积分'].iloc[i])
ax.text(1, 0.4, year, transform=ax.transAxes, color='#777777', size=46, ha='right',alpha=0.5, weight=800)
ax.xaxis.set_major_formatter(ticker.StrMethodFormatter('{x:,.0f}'))
ax.xaxis.set_ticks_position('top')
ax.tick_params(axis='x', colors='#777777', labelsize=12)
ax.set_yticks([])
ax.margins(0, 0.01)
ax.grid(which='major', axis='x', linestyle='-')
ax.set_axisbelow(True)
ax.text(0.2, 1.1, '2010--2019英超各球队年度积分',
transform=ax.transAxes, size=20, weight=600, ha='left');
draw_bar(2019)
函数已经封装好了,接下来是激动人心实现动图的操作了,需要matplotlib中的animation模块,运用该模块中的FuncAnimation方法重复调用前边定义好的画图函数,实现动画效果:
import matplotlib.animation as animation #导入animation模块 from IPython.display import HTML #导入HTML模块 fig, ax = plt.subplots(figsize=(10, 6)) animator = animation.FuncAnimation(fig, draw_bar, frames=range(2010, 2020),interval = 600) #interval控制更迭速度,默认200毫秒 HTML(animator.to_jshtml()) #将渲染的HTML输出嵌入到iPython输出中 animator.save('yingchao.gif',writer='imagemagick') # 保存 gif 动态图
动态条形图就完活儿了,代码没有很复杂,完整的过程就最后的两段代码,前期的代码主要是分解了中间的过程,方便理解而已,有兴趣的小伙伴可以深入研究或者换个数据集看下实现效果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27