
hello大家好,我是写BUG的一行,矩阵相信大家都已经不陌生了,在高中的时候已经接触过了,在后来大学学习线性代数时就已经逼近全面的进行了解了,矩阵运算在科学计算中是非常中要的,而矩阵的基本运算包括矩阵的加法、减法、数乘、转置、共轭和共轭转置,在我们进行建模分析时也会牵扯到一些线性代数和矩阵,今天我们将矩阵分析中的矩阵原理做一下详细的指南。
目录
矩阵在数学中国是一个长方阵列排列出来的复数或实数的集合,是一种表示数据在矩阵中的方法,一个m*n的矩阵有m行和n列,其中每一项基于它的行和列都有它唯一的名字。
矩阵A通常表示为[A],行数和列数称为维数。下面是一个3*2维矩阵的例子。
在矩阵A中,数字a12是第一行和第二列的数字。因此,a12 = 8。a21是第二行第一列的数字。因此a21 = -5。
当两个矩阵要进行相加时,必须两个矩阵的行数和列数相同时,它们才能相加。若要添加两个矩阵的时候,请设置为它们为对应的行列数:
比如:
矩阵加法是可以进行交换的:A+B = B+A。矩阵加法也是可以进行结合的:(A+B)+C = A+(B+C)
矩阵之间如果要进行相减,要从一个矩阵中减去另一个矩阵中它们相对应的项,两个矩阵必须具有相同的行数和相同的列数才可以进行运算。
比如:
如果要将矩阵乘以标量(也就是单个常数,变量或表达式),就需要将矩阵中所有的项乘以标量:
例如:
标量乘法是分配的:±(A+B)=±A+±B,例如:
如果要将两个矩阵相乘,我们首先必须知道如何将一个行(1*p矩阵)乘以一个列(一个p*1矩阵)。如果要将行乘以列,必须将行的第一个元素乘以列的第一个元素,然后将行的第二个元素乘以列的第二个元素,以此类推,最终将所有的结果进行相加。最终的答案也应该是一个单一的数字。例如
当行和列的元素相同时,行可以乘以列。相同的,当第一个矩阵与第二个矩阵的行数相同时,两个矩阵也是可以进行相乘的。简单的来说,两个矩阵的维度位m*p和P*n的时候,它们是可以进行相乘的。它们最终的答案呢,矩阵的行数与第一个矩阵的函数相同,矩阵的列与第二个矩阵的列数相同。换句话说最终的答案的矩阵的维度是m*n。
当两个矩阵相乘时,第一个矩阵的每一个行乘以第二个矩阵的每一列。将答案矩阵的第一行与第一列相乘的结果放在第一行和第一列中。将第一行乘以第二列的结果放到答案矩阵的第一行和第二列中。一般来说将第i行与第j列相乘的结果放在答案矩阵中的第i行和第j列中。
下面我们对两个矩阵相乘的例子:
最终的答案矩阵应该为2行*4列的矩阵,下面是答案矩阵中的每一个元素的计算过程。
答案矩阵中的第一行第一列(第一个矩阵第一行*第二个矩阵第一列):
答案矩阵中的第一行第二列(第一个矩阵第一行*第二个矩阵第二列):
答案矩阵中的第一行第三列(第一个矩阵第一行*第二个矩阵第三列):
答案矩阵的第一行第四列(第一个矩阵第一行*第二个矩阵第四列):
答案矩阵中的第二行第一列(第一个矩阵第二行*第二个矩阵第一列):
依次类推,最终的答案矩阵如下:
需要注意的是,2*3的矩阵乘以3*4的矩阵最终的答案矩阵是2*4的矩阵。矩阵的惩罚不一定是可以进行交换的,AB=BA并不一定总是正确的,但是矩阵乘法是可以进行相关联的:AB(C)=A(BC)
以上就是混淆矩阵等矩阵原理的相关指南,对于学习过矩阵但是已经忘记矩阵相关知识的希望可以帮你恢复有关矩阵的知识,而对于没有接触过矩阵的来说希望可以帮助你理解矩阵究竟是什么样子的,不要被数学中的名词吓到,慢慢的学习,最终会搞明白的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14