京公网安备 11010802034615号
经营许可证编号:京B2-20210330
相信大多数数据分析师在入手python的时候,在学习到time库与datetime库时,都会对两个库里面长得很像,又相互有关联的各种类和方法感到非常窝心。当接触到pandas处理时间序列的方法时,再次发现其中各种类和方法又和前面两个时间库的方法“长得好像又似乎有点不同”,此时,想必每个强迫症学习着内心早已经发出“土拨鼠呐喊”。
趁着宅在家躲疫情的间隙,托福司机重新对这3块知识内容重新梳理,及时制止内心的土拨鼠继续呐喊,现分享给大家。
(一) time库
1. time库与datetime库的关系
在 Python 文档里,time是归类在Generic Operating System Services中,换句话说,它提供的功能是更加接近于操作系统层面的。
而datetime库比time库高级了不少,提供了更多实用的方法,可以理解为datetime基于time进行了封装。
我们先看一下time库。
time库主要围绕unix时间戳进行操作,主要包含一个类:struct_time。
那什么是unix时间戳?它是指格林威治时间1970年01月01日00分00秒(北京时间1970年01月01日08时00分00秒)起至现在的总秒数,比如格林威治时间1970年01月01日00分01秒就以数值1来记载。
time库中只要有四个函数可以获得时间函数,其中time.time()方法就可以获得当前时间戳:
比如我们想获得当前unix时间戳,unix时间戳以浮点数记载:
获得当地时区的unix时间戳:
这里我们会发现,上面的unix时间戳不再以浮点数记载,而是struct_time对象,里面一共记载了九个时间元素,分别是年月日时分秒,tm_wday是这周的第几天(周一是0),tm_yday是这年的第几天,tm_isdst是夏令时。
除此以外,time.localtime()还可以把unix时间戳转化为struct_time格式:
2. struct_time对象的格式化
time库中对时间进行格式化的方法主要是通过time.strftime()方法,基本用法如下:
l time.strftime(tpl,ts)
§ tpl:格式化模块字符串,用来定义输出效果
§ ts:计算机内部时间类型变量,一般使用struct_time对象
该方法返回的对象其实是字符串,比如将上面的struct_time对象gmtime进行时间格式转化:
上面的'%Y-%m-%d %H:%M:%S'是用来转化strcut_time对象的格式化字符串,除此以外还有:
这个表很重要,我们后面在datetime库中的对象以及pandas的datetime型Series对象在日期格式化操作的时候,都能用得上。
而如果我们想要将字符型的时间转化为struct_time对象,可以用time.strptime()方法,格式刚好与time.strftime()方法对应。
比如,如果有字符串时间'2020-02-01 16:49:11',要将其转化为struct_time对象:
3. time库中的休眠时间
time库中最常用的方法还有time.sleep(),比如,如果我们想要程序等待3.3秒之后再输出,可以写time.sleep(3.3)
time.sleep()方法在爬虫等各种程序中应用较广,再次不在累述。
(二) datetime库
datetime库可以说是time库的高级封装,在各种日期数据处理方面,相对于time库,datetime库作了进一步的升级。
datetime库主要记载时间的类有datetime.date类、datetime.time、datetime.datetime类。
1. datetime.date类
在datetime库中,可以通过datetime.date()方法生成年、月、日时间,返回的对象是datetime.date类。
这里要注意,datetime.date类只记录年、月、日这三个时间元素,不记录时分秒等其他时间元素。
通过datetime.date()方法中的参数year、month、day指定年、月、日三个时间元素。
我们可以通过datetime.date.today()方法来获得当前的日期,该方法返回的对象也是datetime.date类。
(1) datetime.date类的属性
另外,datetime.date类常用的属性有year、month、day。参数都为整数:
(2) datetime.date类时间格式化方法
datetime.date类的时间格式化方法也叫strftime(),比如当前我们有datetime.date对象date_samp如下:
通过datetime.date对象直接调用.strftimie()方法进行指定时间格式转换如下:
而格式化字符串可以参考前面time库的表格。这里大家会发现,虽然格式化方法的strftime()的名字和前面一样,且格式化字符串也和前面time库的是一样的,但是其调用方式却又不相同,这也是为什么很多同学两个时间库的格式化方法总是不小心写错的原因。
当然,像上面这种常见的字符串日期类型,每次都要使用这么复杂的格式化字符串来转换,未免太过繁琐,其实datetime.date对象可以直接使用方法.isoformat()来转化:
和datetime.date类的属性相似,datetime.time类也有类似的属性:
而时间格式化的方法和datetime.date类一样,也是通过datetime.time对象的.strftime()方法来调用:
(3) unix时间戳转换
time库中的unix时间戳,如何转化为datetime.date类?用实例的方法.fromtimestamp()即可,比如我们有当前的时间戳current_timestamp:
上面的时间戳我们如果想获得其中的日期的话,可以使用
datetime.date.fromtimestamp()方法直接转换:
当然,返回来的也是datetime.date类的对象。
4. datetime.time类
datetime库中的datetime.time类用来记载时间,包括时、分、秒、毫秒。
datetime.time()方法可以创建datetime.time类的对象,参数包括hour、minute、second、microsecond。
datetime.time类的属性:
而时间格式化的方法和datetime.date类一样,也是通过datetime.time对象的.strftime()方法来调用:
上面可以看到,datetime.time对象的.strftime()方法返回来的对象也是字符串。
同样地,datetime.time对象也有.isoformat()方法:
但是需要留意的是, datetime.time对象并没有.fromtimestamp()方法来进行时间戳转换。
5. datetime.datetime类
datetime.datetime类的对象主要是用作记录年月日、时分秒等时间单位,我们可以把它看做是datetime.date类和datetime.time类的“结合体”。
创建datetime.datetime类对象的方法和datetime.time类也是基本一致的,参数包含year、month、day、hour、minute、second、microsecond。 但是至少要包含year、month、day三个参数。
而datetime.datetime类的时间格式化的方法,也是.strftime(),格式化字符串和前面也是一致的:
datetime.datetime对象的.isoformat()方法返回结果会有点“与众不同”,日期和时间之间多了一个字符‘T’:
而如果想快速获得当前的日期时间,可以使用datetime.datetime.now():
6. datetime.timedelta类
datetime.timedelta类用来记录时间间隔类,给一个时间点加减此类,即可得到一个新的时间。
datetime.timedelta()方法可以用来创建datetime.timedelta对象,参数包含days、hours、minutes、seconds、microseconds。
比如我们创建一个45天零6小时的时间间隔:
时间间隔对象生成后,就可以使用datetime对象对其进行加减:
(三) time库与datetime库时间对象互转
看到这里,相信很多同学内心的土拨鼠都在惨叫:太多东西要记了,我太难啦~
确实,使用Python写爬虫等程序时,时常需要用到time库与datetime库中的各种时间对象,最为头疼的地方往往是各种时间格式转换。其实,在了解time库和datetime库的各种类和属性方法后,记住下面这张图可以事半功倍:
我们通过一下过程捋一下思路:
字符串型时间转datetime.datetime对象,用
datetime.datetime.strptime()方法:
datetime.datetime转字符串,用datetime.datetime实例的.strftime()方法:
字符串型时间转struct_time,用time.strptime()方法:
struct_time转字符串型时间,用time.strftime()方法:
struct_time转unix时间戳,用time.mktime()方法:
unix时间戳转struct_time,用time.gmtime()或time.localtime()方法:
今天我们把python中time库与datetime库几个主要的时间对象的方法都理清楚了,同时将其互转的规律也作了总结和归纳。篇幅有限,我们在下一系列的文章里,继续探讨pandas库中的时间对象和time库、datetime库的对象相互之间的关联性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01