
相信大多数数据分析师在入手python的时候,在学习到time库与datetime库时,都会对两个库里面长得很像,又相互有关联的各种类和方法感到非常窝心。当接触到pandas处理时间序列的方法时,再次发现其中各种类和方法又和前面两个时间库的方法“长得好像又似乎有点不同”,此时,想必每个强迫症学习着内心早已经发出“土拨鼠呐喊”。
趁着宅在家躲疫情的间隙,托福司机重新对这3块知识内容重新梳理,及时制止内心的土拨鼠继续呐喊,现分享给大家。
(一) time库
1. time库与datetime库的关系
在 Python 文档里,time是归类在Generic Operating System Services中,换句话说,它提供的功能是更加接近于操作系统层面的。
而datetime库比time库高级了不少,提供了更多实用的方法,可以理解为datetime基于time进行了封装。
我们先看一下time库。
time库主要围绕unix时间戳进行操作,主要包含一个类:struct_time。
那什么是unix时间戳?它是指格林威治时间1970年01月01日00分00秒(北京时间1970年01月01日08时00分00秒)起至现在的总秒数,比如格林威治时间1970年01月01日00分01秒就以数值1来记载。
time库中只要有四个函数可以获得时间函数,其中time.time()方法就可以获得当前时间戳:
比如我们想获得当前unix时间戳,unix时间戳以浮点数记载:
获得当地时区的unix时间戳:
这里我们会发现,上面的unix时间戳不再以浮点数记载,而是struct_time对象,里面一共记载了九个时间元素,分别是年月日时分秒,tm_wday是这周的第几天(周一是0),tm_yday是这年的第几天,tm_isdst是夏令时。
除此以外,time.localtime()还可以把unix时间戳转化为struct_time格式:
2. struct_time对象的格式化
time库中对时间进行格式化的方法主要是通过time.strftime()方法,基本用法如下:
l time.strftime(tpl,ts)
§ tpl:格式化模块字符串,用来定义输出效果
§ ts:计算机内部时间类型变量,一般使用struct_time对象
该方法返回的对象其实是字符串,比如将上面的struct_time对象gmtime进行时间格式转化:
上面的'%Y-%m-%d %H:%M:%S'是用来转化strcut_time对象的格式化字符串,除此以外还有:
这个表很重要,我们后面在datetime库中的对象以及pandas的datetime型Series对象在日期格式化操作的时候,都能用得上。
而如果我们想要将字符型的时间转化为struct_time对象,可以用time.strptime()方法,格式刚好与time.strftime()方法对应。
比如,如果有字符串时间'2020-02-01 16:49:11',要将其转化为struct_time对象:
3. time库中的休眠时间
time库中最常用的方法还有time.sleep(),比如,如果我们想要程序等待3.3秒之后再输出,可以写time.sleep(3.3)
time.sleep()方法在爬虫等各种程序中应用较广,再次不在累述。
(二) datetime库
datetime库可以说是time库的高级封装,在各种日期数据处理方面,相对于time库,datetime库作了进一步的升级。
datetime库主要记载时间的类有datetime.date类、datetime.time、datetime.datetime类。
1. datetime.date类
在datetime库中,可以通过datetime.date()方法生成年、月、日时间,返回的对象是datetime.date类。
这里要注意,datetime.date类只记录年、月、日这三个时间元素,不记录时分秒等其他时间元素。
通过datetime.date()方法中的参数year、month、day指定年、月、日三个时间元素。
我们可以通过datetime.date.today()方法来获得当前的日期,该方法返回的对象也是datetime.date类。
(1) datetime.date类的属性
另外,datetime.date类常用的属性有year、month、day。参数都为整数:
(2) datetime.date类时间格式化方法
datetime.date类的时间格式化方法也叫strftime(),比如当前我们有datetime.date对象date_samp如下:
通过datetime.date对象直接调用.strftimie()方法进行指定时间格式转换如下:
而格式化字符串可以参考前面time库的表格。这里大家会发现,虽然格式化方法的strftime()的名字和前面一样,且格式化字符串也和前面time库的是一样的,但是其调用方式却又不相同,这也是为什么很多同学两个时间库的格式化方法总是不小心写错的原因。
当然,像上面这种常见的字符串日期类型,每次都要使用这么复杂的格式化字符串来转换,未免太过繁琐,其实datetime.date对象可以直接使用方法.isoformat()来转化:
和datetime.date类的属性相似,datetime.time类也有类似的属性:
而时间格式化的方法和datetime.date类一样,也是通过datetime.time对象的.strftime()方法来调用:
(3) unix时间戳转换
time库中的unix时间戳,如何转化为datetime.date类?用实例的方法.fromtimestamp()即可,比如我们有当前的时间戳current_timestamp:
上面的时间戳我们如果想获得其中的日期的话,可以使用
datetime.date.fromtimestamp()方法直接转换:
当然,返回来的也是datetime.date类的对象。
4. datetime.time类
datetime库中的datetime.time类用来记载时间,包括时、分、秒、毫秒。
datetime.time()方法可以创建datetime.time类的对象,参数包括hour、minute、second、microsecond。
datetime.time类的属性:
而时间格式化的方法和datetime.date类一样,也是通过datetime.time对象的.strftime()方法来调用:
上面可以看到,datetime.time对象的.strftime()方法返回来的对象也是字符串。
同样地,datetime.time对象也有.isoformat()方法:
但是需要留意的是, datetime.time对象并没有.fromtimestamp()方法来进行时间戳转换。
5. datetime.datetime类
datetime.datetime类的对象主要是用作记录年月日、时分秒等时间单位,我们可以把它看做是datetime.date类和datetime.time类的“结合体”。
创建datetime.datetime类对象的方法和datetime.time类也是基本一致的,参数包含year、month、day、hour、minute、second、microsecond。 但是至少要包含year、month、day三个参数。
而datetime.datetime类的时间格式化的方法,也是.strftime(),格式化字符串和前面也是一致的:
datetime.datetime对象的.isoformat()方法返回结果会有点“与众不同”,日期和时间之间多了一个字符‘T’:
而如果想快速获得当前的日期时间,可以使用datetime.datetime.now():
6. datetime.timedelta类
datetime.timedelta类用来记录时间间隔类,给一个时间点加减此类,即可得到一个新的时间。
datetime.timedelta()方法可以用来创建datetime.timedelta对象,参数包含days、hours、minutes、seconds、microseconds。
比如我们创建一个45天零6小时的时间间隔:
时间间隔对象生成后,就可以使用datetime对象对其进行加减:
(三) time库与datetime库时间对象互转
看到这里,相信很多同学内心的土拨鼠都在惨叫:太多东西要记了,我太难啦~
确实,使用Python写爬虫等程序时,时常需要用到time库与datetime库中的各种时间对象,最为头疼的地方往往是各种时间格式转换。其实,在了解time库和datetime库的各种类和属性方法后,记住下面这张图可以事半功倍:
我们通过一下过程捋一下思路:
字符串型时间转datetime.datetime对象,用
datetime.datetime.strptime()方法:
datetime.datetime转字符串,用datetime.datetime实例的.strftime()方法:
字符串型时间转struct_time,用time.strptime()方法:
struct_time转字符串型时间,用time.strftime()方法:
struct_time转unix时间戳,用time.mktime()方法:
unix时间戳转struct_time,用time.gmtime()或time.localtime()方法:
今天我们把python中time库与datetime库几个主要的时间对象的方法都理清楚了,同时将其互转的规律也作了总结和归纳。篇幅有限,我们在下一系列的文章里,继续探讨pandas库中的时间对象和time库、datetime库的对象相互之间的关联性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28