
作者 | Jason Brownlee编译 | CDA数据分析师
使用实值数据(例如使用Pearson的相关系数)时,特征选择通常很简单,但是使用分类数据时可能会遇到挑战。
当目标变量也是分类的(例如分类预测建模)时,分类输入数据的两种最常用的特征选择方法是卡方统计和互信息统计。
在本教程中,您将发现如何使用分类输入数据执行特征选择。
完成本教程后,您将知道:
本教程分为三个部分:他们是:
作为本教程的基础,我们将使用自1980年代以来作为机器学习数据集而被广泛研究的所谓“ 乳腺癌 ”数据集。
该数据集将乳腺癌患者数据分类为癌症复发或无复发。有286个示例和9个输入变量。这是一个二进制分类问题。
天真的模型可以在此数据集上达到70%的精度。好的分数大约是76%+/- 3%。我们将针对该区域,但是请注意,本教程中的模型并未进行优化。它们旨在演示编码方案。
您可以下载数据集,然后将文件另存为“ breast-cancer.csv ”在当前工作目录中。
查看数据,我们可以看到所有九个输入变量都是分类的。
具体来说,所有变量都用引号引起来;有些是序数,有些不是。
'40-49','premeno','15-19','0-2','yes','3','right','left_up','no','recurrence-events' '50-59','ge40','15-19','0-2','no','1','right','central','no','no-recurrence-events' '50-59','ge40','35-39','0-2','no','2','left','left_low','no','recurrence-events' '40-49','premeno','35-39','0-2','yes','3','right','left_low','yes','no-recurrence-events' '40-49','premeno','30-34','3-5','yes','2','left','right_up','no','recurrence-events' ...
我们可以使用Pandas库将该数据集加载到内存中。
... # load the dataset as a pandas DataFrame data = read_csv(filename, header=None) # retrieve numpy array dataset = data.values
加载后,我们可以将列分为输入(X)和输出以进行建模。
... # split into input (X) and output (y) variables X = dataset[:, :-1] y = dataset[:,-1]
最后,我们可以将输入数据中的所有字段都强制为字符串,以防万一熊猫试图将某些字段自动映射为数字(确实如此)。
... # format all fields as string X = X.astype(str)
我们可以将所有这些结合到一个有用的功能中,以备后用。
# load the dataset def load_dataset(filename): # load the dataset as a pandas DataFrame data = read_csv(filename, header=None) # retrieve numpy array dataset = data.values # split into input (X) and output (y) variables X = dataset[:, :-1] y = dataset[:,-1] # format all fields as string X = X.astype(str) return X, y
加载后,我们可以将数据分为训练集和测试集,以便我们可以拟合和评估学习模型。
我们将使用scikit-learn形式的traintestsplit()函数,并将67%的数据用于训练,将33%的数据用于测试。
... # load the dataset X, y = load_dataset('breast-cancer.csv') # split into train and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1)
将所有这些元素结合在一起,下面列出了加载,拆分和汇总原始分类数据集的完整示例。
# load and summarize the dataset from pandas import read_csv from sklearn.model_selection import train_test_split # load the dataset def load_dataset(filename): # load the dataset as a pandas DataFrame data = read_csv(filename, header=None) # retrieve numpy array dataset = data.values # split into input (X) and output (y) variables X = dataset[:, :-1] y = dataset[:,-1] # format all fields as string X = X.astype(str) return X, y # load the dataset X, y = load_dataset('breast-cancer.csv') # split into train and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1) # summarize print('Train', X_train.shape, y_train.shape) print('Test', X_test.shape, y_test.shape)
运行示例将报告训练和测试集的输入和输出元素的大小。
我们可以看到,我们有191个示例用于培训,而95个用于测试。
Train (191, 9) (191, 1) Test (95, 9) (95, 1)
既然我们已经熟悉了数据集,那么让我们看一下如何对它进行编码以进行建模。
我们可以使用scikit-learn的OrdinalEncoder()将每个变量编码为整数。这是一个灵活的类,并且允许将类别的顺序指定为参数(如果已知这样的顺序)。
注意:我将作为练习来更新以下示例,以尝试为具有自然顺序的变量指定顺序,并查看其是否对模型性能产生影响。
对变量进行编码的最佳实践是使编码适合训练数据集,然后将其应用于训练和测试数据集。
下面名为prepare_inputs()的函数获取火车和测试集的输入数据,并使用序数编码对其进行编码。
# prepare input data def prepare_inputs(X_train, X_test): oe = OrdinalEncoder() oe.fit(X_train) X_train_enc = oe.transform(X_train) X_test_enc = oe.transform(X_test) return X_train_enc, X_test_enc
我们还需要准备目标变量。
这是一个二进制分类问题,因此我们需要将两个类标签映射到0和1。这是一种序数编码,而scikit-learn提供了专门为此目的设计的LabelEncoder类。尽管LabelEncoder设计用于编码单个变量,但我们可以轻松使用OrdinalEncoder并获得相同的结果。
所述prepare_targets()函数整数编码的训练集和测试集的输出数据。
# prepare target def prepare_targets(y_train, y_test): le = LabelEncoder() le.fit(y_train) y_train_enc = le.transform(y_train) y_test_enc = le.transform(y_test) return y_train_enc, y_test_enc
我们可以调用这些函数来准备我们的数据。
... # prepare input data X_train_enc, X_test_enc = prepare_inputs(X_train, X_test) # prepare output data y_train_enc, y_test_enc = prepare_targets(y_train, y_test)
综上所述,下面列出了加载和编码乳腺癌分类数据集的输入和输出变量的完整示例。
# example of loading and preparing the breast cancer dataset from pandas import read_csv from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import OrdinalEncoder # load the dataset def load_dataset(filename): # load the dataset as a pandas DataFrame data = read_csv(filename, header=None) # retrieve numpy array dataset = data.values # split into input (X) and output (y) variables X = dataset[:, :-1] y = dataset[:,-1] # format all fields as string X = X.astype(str) return X, y # prepare input data def prepare_inputs(X_train, X_test): oe = OrdinalEncoder() oe.fit(X_train) X_train_enc = oe.transform(X_train) X_test_enc = oe.transform(X_test) return X_train_enc, X_test_enc # prepare target def prepare_targets(y_train, y_test): le = LabelEncoder() le.fit(y_train) y_train_enc = le.transform(y_train) y_test_enc = le.transform(y_test) return y_train_enc, y_test_enc # load the dataset X, y = load_dataset('breast-cancer.csv') # split into train and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1) # prepare input data X_train_enc, X_test_enc = prepare_inputs(X_train, X_test) # prepare output data y_train_enc, y_test_enc = prepare_targets(y_train, y_test)
现在我们已经加载并准备了乳腺癌数据集,我们可以探索特征选择。
有两种流行的特征选择技术,可用于分类输入数据和分类(类)目标变量。
他们是:
让我们依次仔细研究每个对象。
皮尔逊的卡方统计假设检验是分类变量之间独立性检验的一个示例。
您可以在教程中了解有关此统计测试的更多信息:
该测试的结果可用于特征选择,其中可以从数据集中删除与目标变量无关的那些特征。
scikit-learn机器库在chi2()函数中提供了卡方检验的实现。此功能可用于特征选择策略中,例如通过SelectKBest类选择前k个最相关的特征(最大值)。
例如,我们可以定义SelectKBest类以使用chi2 ()函数并选择所有功能,然后转换训练序列和测试集。
... fs = SelectKBest(score_func=chi2, k='all') fs.fit(X_train, y_train) X_train_fs = fs.transform(X_train) X_test_fs = fs.transform(X_test)
然后,我们可以打印每个变量的分数(越大越好),并将每个变量的分数绘制为条形图,以了解应该选择多少个特征。
... # what are scores for the features for i in range(len(fs.scores_)): print('Feature %d: %f' % (i, fs.scores_[i])) # plot the scores pyplot.bar([i for i in range(len(fs.scores_))], fs.scores_) pyplot.show()
将其与上一节中乳腺癌数据集的数据准备结合在一起,下面列出了完整的示例。
# example of chi squared feature selection for categorical data from pandas import read_csv from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import OrdinalEncoder from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import chi2 from matplotlib import pyplot # load the dataset def load_dataset(filename): # load the dataset as a pandas DataFrame data = read_csv(filename, header=None) # retrieve numpy array dataset = data.values # split into input (X) and output (y) variables X = dataset[:, :-1] y = dataset[:,-1] # format all fields as string X = X.astype(str) return X, y # prepare input data def prepare_inputs(X_train, X_test): oe = OrdinalEncoder() oe.fit(X_train) X_train_enc = oe.transform(X_train) X_test_enc = oe.transform(X_test) return X_train_enc, X_test_enc # prepare target def prepare_targets(y_train, y_test): le = LabelEncoder() le.fit(y_train) y_train_enc = le.transform(y_train) y_test_enc = le.transform(y_test) return y_train_enc, y_test_enc # feature selection def select_features(X_train, y_train, X_test): fs = SelectKBest(score_func=chi2, k='all') fs.fit(X_train, y_train) X_train_fs = fs.transform(X_train) X_test_fs = fs.transform(X_test) return X_train_fs, X_test_fs, fs # load the dataset X, y = load_dataset('breast-cancer.csv') # split into train and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1) # prepare input data X_train_enc, X_test_enc = prepare_inputs(X_train, X_test) # prepare output data y_train_enc, y_test_enc = prepare_targets(y_train, y_test) # feature selection X_train_fs, X_test_fs, fs = select_features(X_train_enc, y_train_enc, X_test_enc) # what are scores for the features for i in range(len(fs.scores_)): print('Feature %d: %f' % (i, fs.scores_[i])) # plot the scores pyplot.bar([i for i in range(len(fs.scores_))], fs.scores_) pyplot.show()
首先运行示例将打印为每个输入要素和目标变量计算的分数。
注意:您的具体结果可能会有所不同。尝试运行该示例几次。
在这种情况下,我们可以看到分数很小,仅凭数字很难知道哪个功能更相关。
也许功能3、4、5和8最相关。
Feature 0: 0.472553 Feature 1: 0.029193 Feature 2: 2.137658 Feature 3: 29.381059 Feature 4: 8.222601 Feature 5: 8.100183 Feature 6: 1.273822 Feature 7: 0.950682 Feature 8: 3.699989
创建每个输入要素的要素重要性得分的条形图。
这清楚地表明,特征3可能是最相关的(根据卡方),并且九个输入特征中的四个也许是最相关的。
在配置SelectKBest来选择这前四个功能时,我们可以设置k = 4 。
输入要素的条形图(x)vs Chi-Squared要素重要性(y)
来自信息理论领域的互信息是信息增益(通常用于决策树的构建)在特征选择中的应用。
在两个变量之间计算互信息,并在给定另一个变量的已知值的情况下测量一个变量的不确定性降低。
您可以在以下教程中了解有关相互信息的更多信息。
scikit-learn机器学习库通过commoninfoclassif()函数提供了用于信息选择的互信息实现。
像chi2()一样,它可以用于SelectKBest特征选择策略(和其他策略)中。
# feature selection def select_features(X_train, y_train, X_test): fs = SelectKBest(score_func=mutual_info_classif, k='all') fs.fit(X_train, y_train) X_train_fs = fs.transform(X_train) X_test_fs = fs.transform(X_test) return X_train_fs, X_test_fs, fs
我们可以使用关于乳腺癌组的相互信息来进行特征选择,并像上一节中那样打印和绘制分数(越大越好)。
下面列出了使用互信息进行分类特征选择的完整示例。
# example of mutual information feature selection for categorical data from pandas import read_csv from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import OrdinalEncoder from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import mutual_info_classif from matplotlib import pyplot # load the dataset def load_dataset(filename): # load the dataset as a pandas DataFrame data = read_csv(filename, header=None) # retrieve numpy array dataset = data.values # split into input (X) and output (y) variables X = dataset[:, :-1] y = dataset[:,-1] # format all fields as string X = X.astype(str) return X, y # prepare input data def prepare_inputs(X_train, X_test): oe = OrdinalEncoder() oe.fit(X_train) X_train_enc = oe.transform(X_train) X_test_enc = oe.transform(X_test) return X_train_enc, X_test_enc # prepare target def prepare_targets(y_train, y_test): le = LabelEncoder() le.fit(y_train) y_train_enc = le.transform(y_train) y_test_enc = le.transform(y_test) return y_train_enc, y_test_enc # feature selection def select_features(X_train, y_train, X_test): fs = SelectKBest(score_func=mutual_info_classif, k='all') fs.fit(X_train, y_train) X_train_fs = fs.transform(X_train) X_test_fs = fs.transform(X_test) return X_train_fs, X_test_fs, fs # load the dataset X, y = load_dataset('breast-cancer.csv') # split into train and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1) # prepare input data X_train_enc, X_test_enc = prepare_inputs(X_train, X_test) # prepare output data y_train_enc, y_test_enc = prepare_targets(y_train, y_test) # feature selection X_train_fs, X_test_fs, fs = select_features(X_train_enc, y_train_enc, X_test_enc) # what are scores for the features for i in range(len(fs.scores_)): print('Feature %d: %f' % (i, fs.scores_[i])) # plot the scores pyplot.bar([i for i in range(len(fs.scores_))], fs.scores_) pyplot.show()
首先运行示例将打印为每个输入要素和目标变量计算的分数。
注意:您的具体结果可能会有所不同。尝试运行该示例几次。
在这种情况下,我们可以看到某些功能的得分很低,表明也许可以将其删除。
也许功能3、6、2和5最相关。
Feature 0: 0.003588 Feature 1: 0.000000 Feature 2: 0.025934 Feature 3: 0.071461 Feature 4: 0.000000 Feature 5: 0.038973 Feature 6: 0.064759 Feature 7: 0.003068 Feature 8: 0.000000
创建每个输入要素的要素重要性得分的条形图。
重要的是,促进了特征的不同混合。
既然我们知道如何针对分类预测建模问题对分类数据执行特征选择,那么我们可以尝试使用选定的特征开发模型并比较结果。
有许多不同的技术可用来对特征评分和根据分数选择特征。您怎么知道要使用哪个?
一种可靠的方法是使用不同的特征选择方法(和特征数量)评估模型,然后选择能够产生最佳性能的模型的方法。
在本节中,我们将评估具有所有要素的Logistic回归模型,并将其与通过卡方选择的要素和通过互信息选择的要素构建的模型进行比较。
逻辑回归是测试特征选择方法的良好模型,因为如果从模型中删除了不相关的特征,则逻辑回归性能会更好。
第一步,我们将使用所有可用功能评估LogisticRegression模型。
该模型适合训练数据集,并在测试数据集上进行评估。
下面列出了完整的示例。
# evaluation of a model using all input features from pandas import read_csv from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import OrdinalEncoder from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score # load the dataset def load_dataset(filename): # load the dataset as a pandas DataFrame data = read_csv(filename, header=None) # retrieve numpy array dataset = data.values # split into input (X) and output (y) variables X = dataset[:, :-1] y = dataset[:,-1] # format all fields as string X = X.astype(str) return X, y # prepare input data def prepare_inputs(X_train, X_test): oe = OrdinalEncoder() oe.fit(X_train) X_train_enc = oe.transform(X_train) X_test_enc = oe.transform(X_test) return X_train_enc, X_test_enc # prepare target def prepare_targets(y_train, y_test): le = LabelEncoder() le.fit(y_train) y_train_enc = le.transform(y_train) y_test_enc = le.transform(y_test) return y_train_enc, y_test_enc # load the dataset X, y = load_dataset('breast-cancer.csv') # split into train and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1) # prepare input data X_train_enc, X_test_enc = prepare_inputs(X_train, X_test) # prepare output data y_train_enc, y_test_enc = prepare_targets(y_train, y_test) # fit the model model = LogisticRegression(solver='lbfgs') model.fit(X_train_enc, y_train_enc) # evaluate the model yhat = model.predict(X_test_enc) # evaluate predictions accuracy = accuracy_score(y_test_enc, yhat) print('Accuracy: %.2f' % (accuracy*100))
运行示例将在训练数据集上打印模型的准确性。
注意:根据学习算法的随机性,您的特定结果可能会有所不同。尝试运行该示例几次。
在这种情况下,我们可以看到该模型实现了约75%的分类精度。
我们宁愿使用能够实现比此更好或更高的分类精度的功能子集。
Accuracy: 75.79
下面的select_features()函数已更新以实现此目的。
# feature selection def select_features(X_train, y_train, X_test): fs = SelectKBest(score_func=chi2, k=4) fs.fit(X_train, y_train) X_train_fs = fs.transform(X_train) X_test_fs = fs.transform(X_test) return X_train_fs, X_test_fs
下面列出了使用这种特征选择方法评估逻辑回归模型拟合和对数据进行评估的完整示例。
# evaluation of a model fit using chi squared input features from pandas import read_csv from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import OrdinalEncoder from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import chi2 from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score # load the dataset def load_dataset(filename): # load the dataset as a pandas DataFrame data = read_csv(filename, header=None) # retrieve numpy array dataset = data.values # split into input (X) and output (y) variables X = dataset[:, :-1] y = dataset[:,-1] # format all fields as string X = X.astype(str) return X, y # prepare input data def prepare_inputs(X_train, X_test): oe = OrdinalEncoder() oe.fit(X_train) X_train_enc = oe.transform(X_train) X_test_enc = oe.transform(X_test) return X_train_enc, X_test_enc # prepare target def prepare_targets(y_train, y_test): le = LabelEncoder() le.fit(y_train) y_train_enc = le.transform(y_train) y_test_enc = le.transform(y_test) return y_train_enc, y_test_enc # feature selection def select_features(X_train, y_train, X_test): fs = SelectKBest(score_func=chi2, k=4) fs.fit(X_train, y_train) X_train_fs = fs.transform(X_train) X_test_fs = fs.transform(X_test) return X_train_fs, X_test_fs # load the dataset X, y = load_dataset('breast-cancer.csv') # split into train and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1) # prepare input data X_train_enc, X_test_enc = prepare_inputs(X_train, X_test) # prepare output data y_train_enc, y_test_enc = prepare_targets(y_train, y_test) # feature selection X_train_fs, X_test_fs = select_features(X_train_enc, y_train_enc, X_test_enc) # fit the model model = LogisticRegression(solver='lbfgs') model.fit(X_train_fs, y_train_enc) # evaluate the model yhat = model.predict(X_test_fs) # evaluate predictions accuracy = accuracy_score(y_test_enc, yhat) print('Accuracy: %.2f' % (accuracy*100))
运行示例将报告使用卡方统计量选择的九个输入要素中只有四个要素的模型性能。
注意:根据学习算法的随机性,您的特定结果可能会有所不同。尝试运行该示例几次。
在这种情况下,我们看到该模型的准确度约为74%,性能略有下降。
实际上,某些已删除的功能可能会直接增加价值,或者与所选功能一致。
在这个阶段,我们可能更喜欢使用所有输入功能。
Accuracy: 74.74
我们可以重复实验,并使用相互信息统计量选择前四个功能。
下面列出了实现此目的的select_features()函数的更新版本。
# feature selection def select_features(X_train, y_train, X_test): fs = SelectKBest(score_func=mutual_info_classif, k=4) fs.fit(X_train, y_train) X_train_fs = fs.transform(X_train) X_test_fs = fs.transform(X_test) return X_train_fs, X_test_fs
下面列出了使用互信息进行特征选择以拟合逻辑回归模型的完整示例。
# evaluation of a model fit using mutual information input features from pandas import read_csv from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import OrdinalEncoder from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import mutual_info_classif from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score # load the dataset def load_dataset(filename): # load the dataset as a pandas DataFrame data = read_csv(filename, header=None) # retrieve numpy array dataset = data.values # split into input (X) and output (y) variables X = dataset[:, :-1] y = dataset[:,-1] # format all fields as string X = X.astype(str) return X, y # prepare input data def prepare_inputs(X_train, X_test): oe = OrdinalEncoder() oe.fit(X_train) X_train_enc = oe.transform(X_train) X_test_enc = oe.transform(X_test) return X_train_enc, X_test_enc # prepare target def prepare_targets(y_train, y_test): le = LabelEncoder() le.fit(y_train) y_train_enc = le.transform(y_train) y_test_enc = le.transform(y_test) return y_train_enc, y_test_enc # feature selection def select_features(X_train, y_train, X_test): fs = SelectKBest(score_func=mutual_info_classif, k=4) fs.fit(X_train, y_train) X_train_fs = fs.transform(X_train) X_test_fs = fs.transform(X_test) return X_train_fs, X_test_fs # load the dataset X, y = load_dataset('breast-cancer.csv') # split into train and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1) # prepare input data X_train_enc, X_test_enc = prepare_inputs(X_train, X_test) # prepare output data y_train_enc, y_test_enc = prepare_targets(y_train, y_test) # feature selection X_train_fs, X_test_fs = select_features(X_train_enc, y_train_enc, X_test_enc) # fit the model model = LogisticRegression(solver='lbfgs') model.fit(X_train_fs, y_train_enc) # evaluate the model yhat = model.predict(X_test_fs) # evaluate predictions accuracy = accuracy_score(y_test_enc, yhat) print('Accuracy: %.2f' % (accuracy*100))
运行示例使模型适合于使用互信息选择的前四个精选功能。
注意:根据学习算法的随机性,您的特定结果可能会有所不同。尝试运行该示例几次。
在这种情况下,我们可以看到分类精度小幅提升至76%。
为了确保效果是真实的,最好将每个实验重复多次并比较平均效果。探索使用k倍交叉验证而不是简单的训练/测试拆分也是一个好主意。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27