
看一个地区的高考录取难度,通常会看其录取率,也就是当年高考录取人数/当年高考报考人数。
2018年中国各省录取率倒数前三的是这3个:
但大家都是80%以上,又不太能衡量一个地区的高考难度。
我们再看一下2018年中国各省 本科录取率 的倒数前三,一般来说这个比较能说明问题:
可以看到第一的河南将第二的甘肃远远甩开!
再看一下 一本录取率 的倒数前三:
再挖一下 985 和 211 的录取率,发现都是河南垫底
以上可以得出,河南是当之无愧的高考地狱模式之首。
僧多粥少是河南高考录取率低的原因
2018年高考报名人数最多的前三是
河南有接近100万人报考,整整比第二的广东多出23万人。
报考人数这么多,而河南的高校数量却没那么多。
2018年河南共有153所大学,包括71所本科院校和82所大专院校,这个数量在全国排在第四。
不仅如此,河南省内的重点大学还特别少,一所985大学都木有,仅有一所211就是郑州大学。
可能有人会问,那不考河南省内大学,考省外的不就好了?
你要知道,考入省外学校,可比考自己省内的学校难太多了!
我们国家的高校在每个省的招生人数都是提前计划好的,以清华大学为例,2017年清华在河南的招生人数是198人,而当年河南的高考报名人数是82.6万人,也就是说每个河南考生考上清华的概率是198/82.6万=0.024%,这个概率在全国31个省份中位列倒数第8。
而17年清华在北京的招生人数是296人,当年报考人数是6.06万人,人均概率高达0.488%,位居31个省市第1位。
北京考生的概率足足是河南考生的20.3倍!
我们再来看看其他省份,比如广东省首屈一指的高校中山大学,2017年中大在广东的招生人数是3202人,河南招生人数仅是212人。
广东考生考上中大的概率是0.439%,而河南考生考上中大的概率排在31个省的倒数第二,仅有0.026%,广东考生的概率是河南考生的16.8倍。
综上所述,本省学校不多且好学校极少,外省学校又特别难考,你说河南是不是高考录取率最低的省份,简直是炼狱模式的每年大考!
那么哪些省市是高考的easy模式呢?
毫无疑问是北京、上海、天津了,其中又以北京为首!
北京2017年仅有6万人报名参加高考,人数位居31个省的倒数第六,而北京的高校数量是92所,位居31个省的14名,但北京的211高校高达26所,位居31个省第1名,985高校8所,又是31个省第1名。
上海的话有211高校10所,31个省第3,985高校4所,31个省第2;
天津的211有3所,985有2所,虽然不多但胜在考生少,2017年仅有5万8千人,比北京还少。
不仅如此,北京、上海、天津考其他省的高校还容易!
以中山大学为例,2017年中大在北京的招生人数是296人,除以当年高考报考人数得出人均概率是0.074%,位居31个省第5名,天津第4名,上海第6名。
以清华大学为例,北京考生人均概率第一,上海第二,天津第三。
这也是北京户口那么值钱的原因之一,生在北京,子女的高考甚至人生轨迹瞬间切换到easy模式。
文末挖数根据2018年各省的本科以及211高校的录取率,将各省的高考难度可视化成这张图:
以上都是小编个人的见解和简单分析,不代表任何公众立场。高考录取率孰高孰低,都只是一个宏观数据,回归到个人,还是得看自己的实力和临场发挥。2019年高考即将拉开大幕,预祝天下所有的高考学子,有志者事竟成,考取自己理想的分数,考取自己梦寐的大学,开启人生全新美好的大学篇章!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10